This article needs additional citations for verification .(October 2018) |
In mathematics a polydivisible number (or magic number) is a number in a given number base with digits abcde... that has the following properties: [1]
Let be a positive integer, and let be the number of digits in n written in base b. The number n is a polydivisible number if for all ,
For example, 10801 is a seven-digit polydivisible number in base 4, as
For any given base , there are only a finite number of polydivisible numbers.
The following table lists maximum polydivisible numbers for some bases b, where A−Z represent digit values 10 to 35.
Base | Maximum polydivisible number ( OEIS: A109032 ) | Number of base-b digits ( OEIS: A109783 ) |
---|---|---|
2 | 102 | 2 |
3 | 20 02203 | 6 |
4 | 222 03014 | 7 |
5 | 40220 422005 | 10 |
10 | 36085 28850 36840 07860 36725 [2] [3] [4] | 25 |
12 | 6068 903468 50BA68 00B036 20646412 | 28 |
Let be the number of digits. The function determines the number of polydivisible numbers that has digits in base , and the function is the total number of polydivisible numbers in base .
If is a polydivisible number in base with digits, then it can be extended to create a polydivisible number with digits if there is a number between and that is divisible by . If is less or equal to , then it is always possible to extend an digit polydivisible number to an -digit polydivisible number in this way, and indeed there may be more than one possible extension. If is greater than , it is not always possible to extend a polydivisible number in this way, and as becomes larger, the chances of being able to extend a given polydivisible number become smaller. On average, each polydivisible number with digits can be extended to a polydivisible number with digits in different ways. This leads to the following estimate for :
Summing over all values of n, this estimate suggests that the total number of polydivisible numbers will be approximately
Base | Est. of | Percent Error | |
---|---|---|---|
2 | 2 | 59.7% | |
3 | 15 | -15.1% | |
4 | 37 | 8.64% | |
5 | 127 | −7.14% | |
10 | 20456 [2] | -3.09% | |
All numbers are represented in base , using A−Z to represent digit values 10 to 35.
Length n | F2(n) | Est. of F2(n) | Polydivisible numbers |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 1 | 10 |
Length n | F3(n) | Est. of F3(n) | Polydivisible numbers |
---|---|---|---|
1 | 2 | 2 | 1, 2 |
2 | 3 | 3 | 11, 20, 22 |
3 | 3 | 3 | 110, 200, 220 |
4 | 3 | 2 | 1100, 2002, 2200 |
5 | 2 | 1 | 11002, 20022 |
6 | 2 | 1 | 110020, 200220 |
7 | 0 | 0 | |
Length n | F4(n) | Est. of F4(n) | Polydivisible numbers |
---|---|---|---|
1 | 3 | 3 | 1, 2, 3 |
2 | 6 | 6 | 10, 12, 20, 22, 30, 32 |
3 | 8 | 8 | 102, 120, 123, 201, 222, 300, 303, 321 |
4 | 8 | 8 | 1020, 1200, 1230, 2010, 2220, 3000, 3030, 3210 |
5 | 7 | 6 | 10202, 12001, 12303, 20102, 22203, 30002, 32103 |
6 | 4 | 4 | 120012, 123030, 222030, 321030 |
7 | 1 | 2 | 2220301 |
8 | 0 | 1 | |
The polydivisible numbers in base 5 are
The smallest base 5 polydivisible numbers with n digits are
The largest base 5 polydivisible numbers with n digits are
The number of base 5 polydivisible numbers with n digits are
Length n | F5(n) | Est. of F5(n) |
---|---|---|
1 | 4 | 4 |
2 | 10 | 10 |
3 | 17 | 17 |
4 | 21 | 21 |
5 | 21 | 21 |
6 | 21 | 17 |
7 | 13 | 12 |
8 | 10 | 8 |
9 | 6 | 4 |
10 | 4 | 2 |
The polydivisible numbers in base 10 are
The smallest base 10 polydivisible numbers with n digits are
The largest base 10 polydivisible numbers with n digits are
The number of base 10 polydivisible numbers with n digits are
Length n | F10(n) [5] | Est. of F10(n) |
---|---|---|
1 | 9 | 9 |
2 | 45 | 45 |
3 | 150 | 150 |
4 | 375 | 375 |
5 | 750 | 750 |
6 | 1200 | 1250 |
7 | 1713 | 1786 |
8 | 2227 | 2232 |
9 | 2492 | 2480 |
10 | 2492 | 2480 |
11 | 2225 | 2255 |
12 | 2041 | 1879 |
13 | 1575 | 1445 |
14 | 1132 | 1032 |
15 | 770 | 688 |
16 | 571 | 430 |
17 | 335 | 253 |
18 | 180 | 141 |
19 | 90 | 74 |
20 | 44 | 37 |
21 | 18 | 17 |
22 | 12 | 8 |
23 | 6 | 3 |
24 | 3 | 1 |
25 | 1 | 1 |
The example below searches for polydivisible numbers in Python.
deffind_polydivisible(base:int)->list[int]:"""Find polydivisible number."""numbers=[]previous=[iforiinrange(1,base)]new=[]digits=2whilenotprevious==[]:numbers.append(previous)forninprevious:forjinrange(0,base):number=n*base+jifnumber%digits==0:new.append(number)previous=newnew=[]digits=digits+1returnnumbers
Polydivisible numbers represent a generalization of the following well-known [2] problem in recreational mathematics:
The solution to the problem is a nine-digit polydivisible number with the additional condition that it contains the digits 1 to 9 exactly once each. There are 2,492 nine-digit polydivisible numbers, but the only one that satisfies the additional condition is
Other problems involving polydivisible numbers include:
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the sequence begins
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0.
The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns sequences of integers in which each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all positive integers that have been tried, up to a very large number: 2.95×1020, but no general proof has been found.
In mathematics, the floor function (or greatest integer function) is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted ⌈x⌉ or ceil(x).
In number theory, a Wall–Sun–Sun prime or Fibonacci–Wieferich prime is a certain kind of prime number which is conjectured to exist, although none are known.
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1878 and subsequently proved by Derrick Henry Lehmer in 1930.
In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist, however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.
In number theory, the Ankeny–Artin–Chowla congruence is a result published in 1953 by N. C. Ankeny, Emil Artin and S. Chowla. It concerns the class number h of a real quadratic field of discriminant d > 0. If the fundamental unit of the field is
The Doomsday rule, Doomsday algorithm or Doomsday method is an algorithm of determination of the day of the week for a given date. It provides a perpetual calendar because the Gregorian calendar moves in cycles of 400 years. The algorithm for mental calculation was devised by John Conway in 1973, drawing inspiration from Lewis Carroll's perpetual calendar algorithm. It takes advantage of each year having a certain day of the week upon which certain easy-to-remember dates, called the doomsdays, fall; for example, the last day of February, 4/4, 6/6, 8/8, 10/10, and 12/12 all occur on the same day of the week in any year.
In number theory, a branch of mathematics, the Carmichael functionλ(n) of a positive integer n is the smallest member of the set of positive integers m having the property that
Zeller's congruence is an algorithm devised by Christian Zeller in the 19th century to calculate the day of the week for any Julian or Gregorian calendar date. It can be considered to be based on the conversion between Julian day and the calendar date.
The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such that
In number theory, the law of quadratic reciprocity, like the Pythagorean theorem, has lent itself to an unusually large number of proofs. Several hundred proofs of the law of quadratic reciprocity have been published.
In mathematics, Pépin's test is a primality test, which can be used to determine whether a Fermat number is prime. It is a variant of Proth's test. The test is named for a French mathematician, Théophile Pépin.
A sum-product number in a given number base is a natural number that is equal to the product of the sum of its digits and the product of its digits.
In mathematics, Midy's theorem, named after French mathematician E. Midy, is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period. If the period of the decimal representation of a/p is 2n, so that
In mathematics, trailing zeros are a sequence of 0 in the decimal representation of a number, after which no other digits follow.
The digital root of a natural number in a given radix is the value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached. For example, in base 10, the digital root of the number 12345 is 6 because the sum of the digits in the number is 1 + 2 + 3 + 4 + 5 = 15, then the addition process is repeated again for the resulting number 15, so that the sum of 1 + 5 equals 6, which is the digital root of that number. In base 10, this is equivalent to taking the remainder upon division by 9, which allows it to be used as a divisibility rule.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating. For example, the decimal representation of 1/3 becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is 3227/555, whose decimal becomes periodic at the second digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... Another example of this is 593/53, which becomes periodic after the decimal point, repeating the 13-digit pattern "1886792452830" forever, i.e. 11.18867924528301886792452830....
In number theory, the Fermat quotient of an integer a with respect to an odd prime p is defined as