In number theory, the sum of the first n cubes is the square of the nth triangular number. That is,
The same equation may be written more compactly using the mathematical notation for summation:
This identity is sometimes called Nicomachus's theorem, after Nicomachus of Gerasa (c. 60 – c. 120 CE).
Nicomachus, at the end of Chapter 20 of his Introduction to Arithmetic, pointed out that if one writes a list of the odd numbers, the first is the cube of 1, the sum of the next two is the cube of 2, the sum of the next three is the cube of 3, and so on. He does not go further than this, but from this it follows that the sum of the first n cubes equals the sum of the first n(n + 1)/2 odd numbers, that is, the odd numbers from 1 to n(n + 1) − 1. The average of these numbers is obviously n(n + 1)/2, and there are n(n + 1)/2 of them, so their sum is (n(n + 1)/2)2.
Many early mathematicians have studied and provided proofs of Nicomachus's theorem. Stroeker (1995) claims that "every student of number theory surely must have marveled at this miraculous fact". Pengelley (2002) finds references to the identity not only in the works of Nicomachus in what is now Jordan in the 1st century CE, but also in those of Aryabhata in India in the 5th century, and in those of Al-Karaji c. 1000 in Persia. Bressoud (2004) mentions several additional early mathematical works on this formula, by Al-Qabisi (10th century Arabia), Gersonides (c. 1300, France), and Nilakantha Somayaji (c. 1500, India); he reproduces Nilakantha's visual proof.
The sequence of squared triangular numbers is [1]
These numbers can be viewed as figurate numbers, a four-dimensional hyperpyramidal generalization of the triangular numbers and square pyramidal numbers.
As Stein (1971) observes, these numbers also count the number of rectangles with horizontal and vertical sides formed in an n × n grid. For instance, the points of a 4 × 4 grid (or a square made up of three smaller squares on a side) can form 36 different rectangles. The number of squares in a square grid is similarly counted by the square pyramidal numbers.
The identity also admits a natural probabilistic interpretation as follows. Let X, Y, Z, W be four integer numbers independently and uniformly chosen at random between 1 and n. Then, the probability that W is the largest of the four numbers equals the probability that Y is at least as large as X and that W is at least as large as Z. That is, P[max(X, Y, Z) ≤ W] = P[X ≤ Y ∧ Z ≤ W]. For any particular value of W, the combinations of X, Y, and Z that make W largest form a cube 1 ≤ X, Y, Z ≤ n so (adding the size of this cube over all choices of W) the number of combinations of X, Y, Z, W for which W is largest is a sum of cubes, the left hand side of the Nichomachus identity. The sets of pairs (X, Y) with X ≤ Y and of pairs (Z, W) with Z ≤ W form isosceles right triangles, and the set counted by the right hand side of the equation of probabilities is the Cartesian product of these two triangles, so its size is the square of a triangular number on the right hand side of the Nichomachus identity. The probabilities themselves are respectively the left and right sides of the Nichomachus identity, normalized to make probabilities by dividing both sides by n4.[ citation needed ]
CharlesWheatstone ( 1854 ) gives a particularly simple derivation, by expanding each cube in the sum into a set of consecutive odd numbers. He begins by giving the identity That identity is related to triangular numbers Tn in the following way: and thus the summands forming n3 start off just after those forming all previous values 13 up to (n − 1)3. Applying this property, along with another well-known identity: produces the following derivation:
Row (1893) obtains another proof by summing the numbers in a square multiplication table in two different ways. The sum of the ith row is i times a triangular number, from which it follows that the sum of all the rows is the square of a triangular number. Alternatively, one can decompose the table into a sequence of nested gnomons, each consisting of the products in which the larger of the two terms is some fixed value. The sum within each gmonon is a cube, so the sum of the whole table is a sum of cubes.
In the more recent mathematical literature, Edmonds (1957) provides a proof using summation by parts. Stein (1971) uses the rectangle-counting interpretation of these numbers to form a geometric proof of the identity (see also Benjamin, Quinn & Wurtz 2006); he observes that it may also be proved easily (but uninformatively) by induction, and states that Toeplitz (1963) provides "an interesting old Arabic proof". Kanim (2004) provides a purely visual proof, Benjamin & Orrison (2002) provide two additional proofs, and Nelsen (1993) gives seven geometric proofs.
A similar result to Nicomachus's theorem holds for all power sums, namely that odd power sums (sums of odd powers) are a polynomial in triangular numbers. These are called Faulhaber polynomials, of which the sum of cubes is the simplest and most elegant example. However, in no other case is one power sum a square of another. [2]
Stroeker (1995) studies more general conditions under which the sum of a consecutive sequence of cubes forms a square. Garrett & Hummel (2004) and Warnaar (2004) study polynomial analogues of the square triangular number formula, in which series of polynomials add to the square of another polynomial.
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example, for n = 4,
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.
In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer coefficients. The best-known transcendental numbers are π and e. The quality of a number being transcendental is called transcendence.
The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero.
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form, by some expression involving operations on the formal series.
In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.
In mathematics, the Baker–Campbell–Hausdorff formula gives the value of that solves the equation for possibly noncommutative X and Y in the Lie algebra of a Lie group. There are various ways of writing the formula, but all ultimately yield an expression for in Lie algebraic terms, that is, as a formal series in and and iterated commutators thereof. The first few terms of this series are: where "" indicates terms involving higher commutators of and . If and are sufficiently small elements of the Lie algebra of a Lie group , the series is convergent. Meanwhile, every element sufficiently close to the identity in can be expressed as for a small in . Thus, we can say that near the identity the group multiplication in —written as —can be expressed in purely Lie algebraic terms. The Baker–Campbell–Hausdorff formula can be used to give comparatively simple proofs of deep results in the Lie group–Lie algebra correspondence.
In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.
In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity as n. That is,
In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes.
In mathematics, the difference of two squares is a squared number subtracted from another squared number. Every difference of squares may be factored according to the identity
In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the unsigned Stirling numbers of the first kind count permutations according to their number of cycles.
Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work Elements. There are several proofs of the theorem.
In mathematics, Faulhaber's formula, named after the early 17th century mathematician Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a polynomial in n. In modern notation, Faulhaber's formula is Here, is the binomial coefficient "p + 1 choose r", and the Bj are the Bernoulli numbers with the convention that .
In mathematics and statistics, sums of powers occur in a number of contexts: