Summation by parts

Last updated

In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation, named after Niels Henrik Abel who introduced it in 1826. [1]

Contents

Statement

Suppose and are two sequences. Then,

Using the forward difference operator , it can be stated more succinctly as

Summation by parts is an analogue to integration by parts:

or to Abel's summation formula:

An alternative statement is

which is analogous to the integration by parts formula for semimartingales.

Although applications almost always deal with convergence of sequences, the statement is purely algebraic and will work in any field. It will also work when one sequence is in a vector space, and the other is in the relevant field of scalars.

Newton series

The formula is sometimes given in one of these - slightly different - forms

which represent a special case () of the more general rule

both result from iterated application of the initial formula. The auxiliary quantities are Newton series:

and

A particular () result is the identity

Here, is the binomial coefficient.

Method

For two given sequences and , with , one wants to study the sum of the following series:

If we define then for every and

Finally

This process, called an Abel transformation, can be used to prove several criteria of convergence for .

Similarity with an integration by parts

The formula for an integration by parts is .

Beside the boundary conditions, we notice that the first integral contains two multiplied functions, one which is integrated in the final integral ( becomes ) and one which is differentiated ( becomes ).

The process of the Abel transformation is similar, since one of the two initial sequences is summed ( becomes ) and the other one is differenced ( becomes ).

Applications

Proof of Abel's test. Summation by parts gives

where a is the limit of . As is convergent, is bounded independently of , say by . As go to zero, so go the first two terms. The third term goes to zero by the Cauchy criterion for . The remaining sum is bounded by

by the monotonicity of , and also goes to zero as .

Using the same proof as above, one can show that if

  1. the partial sums form a bounded sequence independently of ;
  2. (so that the sum goes to zero as goes to infinity)

then converges.

In both cases, the sum of the series satisfies:

Summation-by-parts operators for high order finite difference methods

A summation-by-parts (SBP) finite difference operator conventionally consists of a centered difference interior scheme and specific boundary stencils that mimics behaviors of the corresponding integration-by-parts formulation. [3] [4] The boundary conditions are usually imposed by the Simultaneous-Approximation-Term (SAT) technique. [5] The combination of SBP-SAT is a powerful framework for boundary treatment. The method is preferred for well-proven stability for long-time simulation, and high order of accuracy.

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

In mathematics, a series is, roughly speaking, the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions is the pointwise product of their Fourier transforms. More generally, convolution in one domain equals point-wise multiplication in the other domain. Other versions of the convolution theorem are applicable to various Fourier-related transforms.

In mathematics, a generating function is a way of encoding an infinite sequence of numbers by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:

In mathematics, summation is the addition of a sequence of any kind of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

In mathematical analysis, Cesàro summation assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.

In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of values.

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence of non-negative real numbers, the series converges if and only if the "condensed" series converges. Moreover, if they converge, the sum of the condensed series is no more than twice as large as the sum of the original.

In combinatorics, the binomial transform is a sequence transformation that computes its forward differences. It is closely related to the Euler transform, which is the result of applying the binomial transform to the sequence associated with its ordinary generating function.

Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.

In applied mathematics, polyharmonic splines are used for function approximation and data interpolation. They are very useful for interpolating and fitting scattered data in many dimensions. Special cases include thin plate splines and natural cubic splines in one dimension.

Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series. Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

The Pomeranchuk instability is an instability in the shape of the Fermi surface of a material with interacting fermions, causing Landau’s Fermi liquid theory to break down. It occurs when a Landau parameter in Fermi liquid theory has a sufficiently negative value, causing deformations of the Fermi surface to be energetically favourable. It is named after the Soviet physicist Isaak Pomeranchuk.

In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral transform that inverts the operation of forming the DGF of a sequence. This inversion is analogous to performing an inverse Z-transform to the generating function of a sequence to express formulas for the series coefficients of a given ordinary generating function.

References

  1. Chu, Wenchang (2007). "Abel's lemma on summation by parts and basic hypergeometric series". Advances in Applied Mathematics. 39 (4): 490–514. doi: 10.1016/j.aam.2007.02.001 .
  2. Edmonds, Sheila M. (1957). "Sums of powers of the natural numbers". The Mathematical Gazette. 41 (337): 187–188. doi:10.2307/3609189. JSTOR   3609189. MR   0096615.
  3. Strand, Bo (January 1994). "Summation by Parts for Finite Difference Approximations for d/dx". Journal of Computational Physics. 110 (1): 47–67. doi:10.1006/jcph.1994.1005.
  4. Mattsson, Ken; Nordström, Jan (September 2004). "Summation by parts operators for finite difference approximations of second derivatives". Journal of Computational Physics. 199 (2): 503–540. doi:10.1016/j.jcp.2004.03.001.
  5. Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul (April 1994). "Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes". Journal of Computational Physics. 111 (2): 220–236. CiteSeerX   10.1.1.465.603 . doi:10.1006/jcph.1994.1057.

Bibliography