Abel transform

Last updated

In mathematics, the Abel transform, [1] named for Niels Henrik Abel, is an integral transform often used in the analysis of spherically symmetric or axially symmetric functions. The Abel transform of a function f(r) is given by

Contents

Assuming that f(r) drops to zero more quickly than 1/r, the inverse Abel transform is given by

In image analysis, the forward Abel transform is used to project an optically thin, axially symmetric emission function onto a plane, and the inverse Abel transform is used to calculate the emission function given a projection (i.e. a scan or a photograph) of that emission function.

In absorption spectroscopy of cylindrical flames or plumes, the forward Abel transform is the integrated absorbance along a ray with closest distance y from the center of the flame, while the inverse Abel transform gives the local absorption coefficient at a distance r from the center. Abel transform is limited to applications with axially symmetric geometries. For more general asymmetrical cases, more general-oriented reconstruction algorithms such as algebraic reconstruction technique (ART), maximum likelihood expectation maximization (MLEM), filtered back-projection (FBP) algorithms should be employed.

In recent years, the inverse Abel transform (and its variants) has become the cornerstone of data analysis in photofragment-ion imaging and photoelectron imaging. Among recent most notable extensions of inverse Abel transform are the "onion peeling" and "basis set expansion" (BASEX) methods of photoelectron and photoion image analysis.

Geometrical interpretation

A geometrical interpretation of the Abel transform in two dimensions. An observer (I) looks along a line parallel to the x axis a distance y above the origin. What the observer sees is the projection (i.e. the integral) of the circularly symmetric function f(r) along the line of sight. The function f(r) is represented in gray in this figure. The observer is assumed to be located infinitely far from the origin so that the limits of integration are +-[?]. AbelTransform.png
A geometrical interpretation of the Abel transform in two dimensions. An observer (I) looks along a line parallel to the x axis a distance y above the origin. What the observer sees is the projection (i.e. the integral) of the circularly symmetric function f(r) along the line of sight. The function f(r) is represented in gray in this figure. The observer is assumed to be located infinitely far from the origin so that the limits of integration are ±∞.

In two dimensions, the Abel transform F(y) can be interpreted as the projection of a circularly symmetric function f(r) along a set of parallel lines of sight at a distance y from the origin. Referring to the figure on the right, the observer (I) will see

where f(r) is the circularly symmetric function represented by the gray color in the figure. It is assumed that the observer is actually at x = ∞, so that the limits of integration are ±∞, and all lines of sight are parallel to the x axis. Realizing that the radius r is related to x and y as r2 = x2 + y2, it follows that

for x > 0. Since f(r) is an even function in x, we may write

which yields the Abel transform of f(r).

The Abel transform may be extended to higher dimensions. Of particular interest is the extension to three dimensions. If we have an axially symmetric function f(ρ, z), where ρ2 = x2 + y2 is the cylindrical radius, then we may want to know the projection of that function onto a plane parallel to the z axis. Without loss of generality, we can take that plane to be the yz plane, so that

which is just the Abel transform of f(ρ, z) in ρ and y.

A particular type of axial symmetry is spherical symmetry. In this case, we have a function f(r), where r2 = x2 + y2 + z2. The projection onto, say, the yz plane will then be circularly symmetric and expressible as F(s), where s2 = y2 + z2. Carrying out the integration, we have

which is again, the Abel transform of f(r) in r and s.

Verification of the inverse Abel transform

Assuming is continuously differentiable and , drop to zero faster than , we can set and . Integration by parts then yields

Differentiating formally,

Now substitute this into the inverse Abel transform formula:

By Fubini's theorem, the last integral equals

Generalization of the Abel transform to discontinuous F(y)

Consider the case where is discontinuous at , where it abruptly changes its value by a finite amount . That is, and are defined by . Such a situation is encountered in tethered polymers (Polymer brush) exhibiting a vertical phase separation, where stands for the polymer density profile and is related to the spatial distribution of terminal, non-tethered monomers of the polymers.

The Abel transform of a function f(r) is under these circumstances again given by:

Assuming f(r) drops to zero more quickly than 1/r, the inverse Abel transform is however given by

where is the Dirac delta function and the Heaviside step function. The extended version of the Abel transform for discontinuous F is proven upon applying the Abel transform to shifted, continuous , and it reduces to the classical Abel transform when . If has more than a single discontinuity, one has to introduce shifts for any of them to come up with a generalized version of the inverse Abel transform which contains n additional terms, each of them corresponding to one of the n discontinuities.

Relationship to other integral transforms

Relationship to the Fourier and Hankel transforms

The Abel transform is one member of the FHA cycle of integral operators. For example, in two dimensions, if we define A as the Abel transform operator, F as the Fourier transform operator and H as the zeroth-order Hankel transform operator, then the special case of the projection-slice theorem for circularly symmetric functions states that

In other words, applying the Abel transform to a 1-dimensional function and then applying the Fourier transform to that result is the same as applying the Hankel transform to that function. This concept can be extended to higher dimensions.

Relationship to the Radon transform

Abel transform can be viewed as the Radon transform of an isotropic 2D function f(r). As f(r) is isotropic, its Radon transform is the same at different angles of the viewing axis. Thus, the Abel transform is a function of the distance along the viewing axis only.

See also

Related Research Articles

Heat equation Type of partial differential equation

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

In physics, the screened Poisson equation is a Poisson equation, which arises in the Klein–Gordon equation, electric field screening in plasmas, and nonlocal granular fluidity in granular flow.

Spherical harmonics Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

Wave packet Short "burst" or "envelope" of restricted wave action that travels as a unit

In physics, a wave packet is a short "burst" or "envelope" of localized wave action that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere. Each component wave function, and hence the wave packet, are solutions of a wave equation. Depending on the wave equation, the wave packet's profile may remain constant or it may change (dispersion) while propagating.

Radon transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces, and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

In mathematics, Laplace's method, named after Pierre-Simon Laplace, is a technique used to approximate integrals of the form

In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

Multiple integral Generalization of definite integrals to functions of multiple variables

In mathematics, a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in are called double integrals, and integrals of a function of three variables over a region in are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

Wigner distribution function

The Wigner distribution function (WDF) is used in signal processing as a transform in time-frequency analysis.

Spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as 1/R. Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.

In physics, the Green's function for Laplace's equation in three variables is used to describe the response of a particular type of physical system to a point source. In particular, this Green's function arises in systems that can be described by Poisson's equation, a partial differential equation (PDE) of the form

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product

In mathematics, the Bussgang theorem is a theorem of stochastic analysis. The theorem states that the crosscorrelation of a Gaussian signal before and after it has passed through a nonlinear operation are equal up to a constant. It was first published by Julian J. Bussgang in 1952 while he was at the Massachusetts Institute of Technology.

The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

Blade element momentum theory is a theory that combines both blade element theory and momentum theory. It is used to calculate the local forces on a propeller or wind-turbine blade. Blade element theory is combined with momentum theory to alleviate some of the difficulties in calculating the induced velocities at the rotor.

References

  1. N. H. Abel, Journal für die reine und angewandte Mathematik, 1, pp. 153–157 (1826).