Polite number

Last updated
A Young diagram representing visually a polite expansion 15 = 4 + 5 + 6 Young 456 French.svg
A Young diagram representing visually a polite expansion 15 = 4 + 5 + 6

In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.

Contents

Polite numbers have also been called staircase numbers because the Young diagrams which represent graphically the partitions of a polite number into consecutive integers (in the French notation of drawing these diagrams) resemble staircases. [3] [4] [5] If all numbers in the sum are strictly greater than one, the numbers so formed are also called trapezoidal numbers because they represent patterns of points arranged in a trapezoid. [6] [7] [8] [9] [10] [11] [12]

The problem of representing numbers as sums of consecutive integers and of counting the number of representations of this type has been studied by Sylvester, [13] Mason, [14] [15] Leveque, [16] and many other more recent authors. [1] [2] [17] [18] [19] [20] [21] [22] [23] The polite numbers describe the possible numbers of sides of the Reinhardt polygons. [24]

Examples and characterization

The first few polite numbers are

3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, ... (sequence A138591 in the OEIS ).

The impolite numbers are exactly the powers of two. [13] It follows from the Lambek–Moser theorem that the nth polite number is f(n +1), where

Politeness

The politeness of a positive number is defined as the number of ways it can be expressed as the sum of consecutive integers. For every x, the politeness of x equals the number of odd divisors of x that are greater than one. [13] The politeness of the numbers 1, 2, 3, ... is

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 3, 0, 1, 2, 1, 1, 3, ... (sequence A069283 in the OEIS ).

For instance, the politeness of 9 is 2 because it has two odd divisors, 3 and 9, and two polite representations

9 = 2 + 3 + 4 = 4 + 5;

the politeness of 15 is 3 because it has three odd divisors, 3, 5, and 15, and (as is familiar to cribbage players) [25] three polite representations

15 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5 = 7 + 8.

An easy way of calculating the politeness of a positive number by decomposing the number into its prime factors, taking the powers of all prime factors greater than 2, adding 1 to all of them, multiplying the numbers thus obtained with each other and subtracting 1. For instance 90 has politeness 5 because ; the powers of 3 and 5 are respectively 2 and 1, and applying this method .

Construction of polite representations from odd divisors

To see the connection between odd divisors and polite representations, suppose a number x has the odd divisor y >1. Then y consecutive integers centered on x/y (so that their average value is x/y) have x as their sum:

Some of the terms in this sum may be zero or negative. However, if a term is zero it can be omitted and any negative terms may be used to cancel positive ones, leading to a polite representation for x. (The requirement that y >1 corresponds to the requirement that a polite representation have more than one term; applying the same construction for y = 1 would just lead to the trivial one-term representation x = x.) For instance, the polite number x = 14 has a single nontrivial odd divisor, 7. It is therefore the sum of 7 consecutive numbers centered at 14/7 = 2:

14 = (2 − 3) + (2 − 2) + (2 − 1) + 2 + (2 + 1) + (2 + 2) + (2 + 3).

The first term, −1, cancels a later +1, and the second term, zero, can be omitted, leading to the polite representation

14 = 2 + (2 + 1) + (2 + 2) + (2 + 3) = 2 + 3 + 4 + 5.

Conversely, every polite representation of x can be formed from this construction. If a representation has an odd number of terms, x/y is the middle term, while if it has an even number of terms and its minimum value is m it may be extended in a unique way to a longer sequence with the same sum and an odd number of terms, by including the 2m  1 numbers −(m  1), −(m  2), ..., −1, 0, 1, ..., m  2, m  1. After this extension, again, x/y is the middle term. By this construction, the polite representations of a number and its odd divisors greater than one may be placed into a one-to-one correspondence, giving a bijective proof of the characterization of polite numbers and politeness. [13] [26] More generally, the same idea gives a two-to-one correspondence between, on the one hand, representations as a sum of consecutive integers (allowing zero, negative numbers, and single-term representations) and on the other hand odd divisors (including 1). [15]

Another generalization of this result states that, for any n, the number of partitions of n into odd numbers having k distinct values equals the number of partitions of n into distinct numbers having k maximal runs of consecutive numbers. [13] [27] [28] Here a run is one or more consecutive values such that the next larger and the next smaller consecutive values are not part of the partition; for instance the partition 10 = 1 + 4 + 5 has two runs, 1 and 4 + 5. A polite representation has a single run, and a partition with one value d is equivalent to a factorization of n as the product d ⋅ (n/d), so the special case k = 1 of this result states again the equivalence between polite representations and odd factors (including in this case the trivial representation n = n and the trivial odd factor 1).

Trapezoidal numbers

If a polite representation starts with 1, the number so represented is a triangular number

Otherwise, it is the difference of two nonconsecutive triangular numbers

This second case is called a trapezoidal number. [12] One can also consider polite numbers that aren't trapezoidal. The only such numbers are the triangular numbers with only one nontrivial odd divisor, because for those numbers, according to the bijection described earlier, the odd divisor corresponds to the triangular representation and there can be no other polite representations. Thus, non-trapezoidal polite number must have the form of a power of two multiplied by an odd prime. As Jones and Lord observe, [12] there are exactly two types of triangular numbers with this form:

  1. the even perfect numbers 2n 1(2n  1) formed by the product of a Mersenne prime 2n 1 with half the nearest power of two, and
  2. the products 2n  1(2n +1) of a Fermat prime 2n +1 with half the nearest power of two.

(sequence A068195 in the OEIS ). For instance, the perfect number 28 = 23  1(23  1) and the number 136 = 24  1(24 + 1) are both this type of polite number. It is conjectured that there are infinitely many Mersenne primes, in which case there are also infinitely many polite numbers of this type.

Related Research Articles

<span class="mw-page-title-main">Amicable numbers</span> Pair of integers related by their divisors

Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function).

<span class="mw-page-title-main">Perfect number</span> Integer equal to the sum of its proper divisors

In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number.

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures.

<span class="mw-page-title-main">Partition (number theory)</span> Decomposition of an integer as a sum of positive integers

In number theory and combinatorics, a partition of a non-negative integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, 4 can be partitioned in five distinct ways:

<span class="mw-page-title-main">Square number</span> Product of an integer with itself

In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

<span class="mw-page-title-main">Multiply perfect number</span> Number whose divisors add to a multiple of that number

In mathematics, a multiply perfect number is a generalization of a perfect number.

<span class="mw-page-title-main">Abundant number</span> Number that is less than the sum of its proper divisors

In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

In mathematics, a quasiperfect number is a natural number n for which the sum of all its divisors (the divisor function σ(n)) is equal to 2n + 1. Equivalently, n is the sum of its non-trivial divisors (that is, its divisors excluding 1 and n). No quasiperfect numbers have been found so far.

<span class="mw-page-title-main">Almost perfect number</span> Class of natural number

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficientnumber) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.

<span class="mw-page-title-main">Egyptian fraction</span> Finite sum of distinct unit fractions

An Egyptian fraction is a finite sum of distinct unit fractions, such as

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.

2000 is a natural number following 1999 and preceding 2001.

In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.

<span class="mw-page-title-main">Practical number</span> Number such that it and all smaller numbers may be represented as sums of its distinct divisors

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

744 is the natural number following 743 and preceding 745.

<span class="mw-page-title-main">Calkin–Wilf tree</span> Binary tree of rational numbers

In number theory, the Calkin–Wilf tree is a tree in which the vertices correspond one-to-one to the positive rational numbers. The tree is rooted at the number 1, and any rational number expressed in simplest terms as the fraction a/b has as its two children the numbers a/a + b and a + b/b. Every positive rational number appears exactly once in the tree. It is named after Neil Calkin and Herbert Wilf, but appears in other works including Kepler's Harmonices Mundi.

<span class="mw-page-title-main">Moser–de Bruijn sequence</span> Number, sum of distinct powers of 4

In number theory, the Moser–de Bruijn sequence is an integer sequence named after Leo Moser and Nicolaas Govert de Bruijn, consisting of the sums of distinct powers of 4. Equivalently, they are the numbers whose binary representations are nonzero only in even positions.

In mathematics, the fibbinary numbers are the numbers whose binary representation does not contain two consecutive ones. That is, they are sums of distinct and non-consecutive powers of two.

References

  1. 1 2 Adams, Ken (March 1993), "How polite is x?", The Mathematical Gazette, 77 (478): 79–80, doi:10.2307/3619263, JSTOR   3619263, S2CID   171530924 .
  2. 1 2 Griggs, Terry S. (December 1991), "Impolite Numbers", The Mathematical Gazette, 75 (474): 442–443, doi:10.2307/3618630, JSTOR   3618630, S2CID   171681914 .
  3. Mason, John; Burton, Leone; Stacey, Kaye (1982), Thinking Mathematically, Addison-Wesley, ISBN   978-0-201-10238-3 .
  4. Stacey, K.; Groves, S. (1985), Strategies for Problem Solving, Melbourne: Latitude.
  5. Stacey, K.; Scott, N. (2000), "Orientation to deep structure when trying examples: a key to successful problem solving", in Carillo, J.; Contreras, L. C. (eds.), Resolucion de Problemas en los Albores del Siglo XXI: Una vision Internacional desde Multiples Perspectivas y Niveles Educativos (PDF), Huelva, Spain: Hergue, pp. 119–147, archived from the original (PDF) on 2008-07-26.
  6. Gamer, Carlton; Roeder, David W.; Watkins, John J. (1985), "Trapezoidal numbers", Mathematics Magazine, 58 (2): 108–110, doi:10.2307/2689901, JSTOR   2689901 .
  7. Jean, Charles-É. (March 1991), "Les nombres trapézoïdaux" (French), Bulletin de l'AMQ: 6–11.
  8. Haggard, Paul W.; Morales, Kelly L. (1993), "Discovering relationships and patterns by exploring trapezoidal numbers", International Journal of Mathematical Education in Science and Technology, 24 (1): 85–90, doi:10.1080/0020739930240111 .
  9. Feinberg-McBrian, Carol (1996), "The case of trapezoidal numbers", Mathematics Teacher, 89 (1): 16–24, doi:10.5951/MT.89.1.0016 .
  10. Smith, Jim (1997), "Trapezoidal numbers", Mathematics in School, 5: 42.
  11. Verhoeff, T. (1999), "Rectangular and trapezoidal arrangements", Journal of Integer Sequences, 2: 16, Bibcode:1999JIntS...2...16V, Article 99.1.6.
  12. 1 2 3 Jones, Chris; Lord, Nick (1999), "Characterising non-trapezoidal numbers", The Mathematical Gazette, 83 (497): 262–263, doi:10.2307/3619053, JSTOR   3619053, S2CID   125545112 .
  13. 1 2 3 4 5 Sylvester, J. J.; Franklin, F (1882), "A constructive theory of partitions, arranged in three acts, an interact and an exodion", American Journal of Mathematics, 5 (1): 251–330, doi:10.2307/2369545, JSTOR   2369545 . In The collected mathematical papers of James Joseph Sylvester (December 1904), H. F. Baker, ed. Sylvester defines the class of a partition into distinct integers as the number of blocks of consecutive integers in the partition, so in his notation a polite partition is of first class.
  14. Mason, T. E. (1911), "On the representations of a number as a sum of consecutive integers", Proceedings of the Indiana Academy of Science: 273–274.
  15. 1 2 Mason, Thomas E. (1912), "On the representation of an integer as the sum of consecutive integers", American Mathematical Monthly, 19 (3): 46–50, doi:10.2307/2972423, JSTOR   2972423, MR   1517654 .
  16. Leveque, W. J. (1950), "On representations as a sum of consecutive integers", Canadian Journal of Mathematics, 2: 399–405, doi: 10.4153/CJM-1950-036-3 , MR   0038368, S2CID   124093945 ,
  17. Pong, Wai Yan (2007), "Sums of consecutive integers", College Math. J., 38 (2): 119–123, arXiv: math/0701149 , Bibcode:2007math......1149P, doi:10.1080/07468342.2007.11922226, MR   2293915, S2CID   14169613 .
  18. Britt, Michael J. C.; Fradin, Lillie; Philips, Kathy; Feldman, Dima; Cooper, Leon N. (2005), "On sums of consecutive integers", Quart. Appl. Math., 63 (4): 791–792, doi:10.1090/S0033-569X-05-00991-1, MR   2187932 .
  19. Frenzen, C. L. (1997), "Proof without words: sums of consecutive positive integers", Math. Mag., 70 (4): 294, doi:10.1080/0025570X.1997.11996560, JSTOR   2690871, MR   1573264 .
  20. Guy, Robert (1982), "Sums of consecutive integers" (PDF), Fibonacci Quarterly , 20 (1): 36–38, Zbl   0475.10014 .
  21. Apostol, Tom M. (2003), "Sums of consecutive positive integers", The Mathematical Gazette, 87 (508): 98–101, doi:10.1017/S002555720017216X, JSTOR   3620570, S2CID   125202845 .
  22. Prielipp, Robert W.; Kuenzi, Norbert J. (1975), "Sums of consecutive positive integers", Mathematics Teacher, 68 (1): 18–21, doi:10.5951/MT.68.1.0018 .
  23. Parker, John (1998), "Sums of consecutive integers", Mathematics in School, 27 (2): 8–11.
  24. Mossinghoff, Michael J. (2011), "Enumerating isodiametric and isoperimetric polygons", Journal of Combinatorial Theory , Series A, 118 (6): 1801–1815, doi: 10.1016/j.jcta.2011.03.004 , MR   2793611
  25. Graham, Ronald; Knuth, Donald; Patashnik, Oren (1988), "Problem 2.30", Concrete Mathematics, Addison-Wesley, p. 65, ISBN   978-0-201-14236-5 .
  26. Vaderlind, Paul; Guy, Richard K.; Larson, Loren C. (2002), The inquisitive problem solver, Mathematical Association of America, pp. 205–206, ISBN   978-0-88385-806-6 .
  27. Andrews, G. E. (1966), "On generalizations of Euler's partition theorem", Michigan Mathematical Journal, 13 (4): 491–498, doi: 10.1307/mmj/1028999609 , MR   0202617 .
  28. Ramamani, V.; Venkatachaliengar, K. (1972), "On a partition theorem of Sylvester", The Michigan Mathematical Journal, 19 (2): 137–140, doi: 10.1307/mmj/1029000844 , MR   0304323 .