Multiply perfect number

Last updated
Demonstration, with Cuisenaire rods, of the 2-perfection of the number 6 Multiply perfect number Cuisenaire rods 6.png
Demonstration, with Cuisenaire rods, of the 2-perfection of the number 6

In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number.

Contents

For a given natural number k, a number n is called k-perfect (or k-fold perfect) if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to kn; a number is thus perfect if and only if it is 2-perfect. A number that is k-perfect for a certain k is called a multiply perfect number. As of 2014, k-perfect numbers are known for each value of k up to 11. [1]

It is unknown whether there are any odd multiply perfect numbers other than 1. The first few multiply perfect numbers are:

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, ... (sequence A007691 in the OEIS ).

Example

The sum of the divisors of 120 is

1 + 2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 15 + 20 + 24 + 30 + 40 + 60 + 120 = 360

which is 3 × 120. Therefore 120 is a 3-perfect number.

Smallest known k-perfect numbers

The following table gives an overview of the smallest known k-perfect numbers for k ≤ 11 (sequence A007539 in the OEIS ):

kSmallest known k-perfect numberPrime factorsFound by
1 1 ancient
2 6 2 × 3ancient
3 120 23 × 3 × 5ancient
43024025 × 33 × 5 × 7 René Descartes, circa 1638
51418243904027 × 34 × 5 × 7 × 112 × 17 × 19René Descartes, circa 1638
6154345556085770649600 (21 digits)215 × 35 × 52 × 72 × 11 × 13 × 17 × 19 × 31 × 43 × 257 Robert Daniel Carmichael, 1907
7141310897947438348259849402738485523264343544818565120000 (57 digits)232 × 311 × 54 × 75 × 112 × 132 × 17 × 193 × 23 × 31 × 37 × 43 × 61 × 71 × 73 × 89 × 181 × 2141 × 599479TE Mason, 1911
8826809968707776137289924...057256213348352000000000 (133 digits)262 × 315 × 59 × 77 × 113 × 133 × 172 × 19 × 23 × 29 × ... × 487 × 5212 × 601 × 1201 × 1279 × 2557 × 3169 × 5113 × 92737 × 649657 (38 distinct prime factors)Stephen F. Gretton, 1990 [1]
9561308081837371589999987...415685343739904000000000 (287 digits)2104 × 343 × 59 × 712 × 116 × 134 × 17 × 194 × 232 × 29 × ... × 17351 × 29191 × 30941 × 45319 × 106681 × 110563 × 122921 × 152041 × 570461 × 16148168401 (66 distinct prime factors)Fred Helenius, 1995 [1]
10448565429898310924320164...000000000000000000000000 (639 digits)2175 × 369 × 529 × 718 × 1119 × 138 × 179 × 197 × 239 × 293 × ... × 583367 × 1609669 × 3500201 × 119782433 × 212601841 × 2664097031 × 2931542417 × 43872038849 × 374857981681 × 4534166740403 (115 distinct prime factors) George Woltman, 2013 [1]
11251850413483992918774837...000000000000000000000000 (1907 digits)2468 × 3140 × 566 × 749 × 1140 × 1331 × 1711 × 1912 × 239 × 297 × ... × 25922273669242462300441182317 × 15428152323948966909689390436420781 × 420391294797275951862132367930818883361 × 23735410086474640244277823338130677687887 × 628683935022908831926019116410056880219316806841500141982334538232031397827230330241 (246 distinct prime factors)George Woltman, 2001 [1]

Properties

It can be proven that:

Odd multiply perfect numbers

It is unknown whether there are any odd multiply perfect numbers other than 1. However if an odd k-perfect number n exists where k > 2, then it must satisfy the following conditions: [2]

Bounds

In little-o notation, the number of multiply perfect numbers less than x is for all ε > 0. [2]

The number of k-perfect numbers n for nx is less than , where c and c' are constants independent of k. [2]

Under the assumption of the Riemann hypothesis, the following inequality is true for all k-perfect numbers n, where k > 3

where is Euler's gamma constant. This can be proven using Robin's theorem.

The number of divisors τ(n) of a k-perfect number n satisfies the inequality [3]

The number of distinct prime factors ω(n) of n satisfies [4]

If the distinct prime factors of n are , then: [4]

Specific values of k

Perfect numbers

A number n with σ(n) = 2n is perfect.

Triperfect numbers

A number n with σ(n) = 3n is triperfect. There are only six known triperfect numbers and these are believed to comprise all such numbers:

120, 672, 523776, 459818240, 1476304896, 51001180160 (sequence A005820 in the OEIS )

If there exists an odd perfect number m (a famous open problem) then 2m would be 3-perfect, since σ(2m) = σ(2)σ(m) = 3×2m. An odd triperfect number must be a square number exceeding 1070 and have at least 12 distinct prime factors, the largest exceeding 105. [5]

Variations

Unitary multiply perfect numbers

A similar extension can be made for unitary perfect numbers. A positive integer n is called a unitary multik-perfectnumber if σ*(n) = kn where σ*(n) is the sum of its unitary divisors. (A divisor d of a number n is a unitary divisor if d and n/d share no common factors.).

A unitary multiply perfect number is simply a unitary multi k-perfect number for some positive integer k. Equivalently, unitary multiply perfect numbers are those n for which n divides σ*(n). A unitary multi 2-perfect number is naturally called a unitary perfect number. In the case k > 2, no example of a unitary multi k-perfect number is yet known. It is known that if such a number exists, it must be even and greater than 10102 and must have more than forty four odd prime factors. This problem is probably very difficult to settle. The concept of unitary divisor was originally due to R. Vaidyanathaswamy (1931) who called such a divisor as block factor. The present terminology is due to E. Cohen (1960).

The first few unitary multiply perfect numbers are:

1, 6, 60, 90, 87360 (sequence A327158 in the OEIS )

Bi-unitary multiply perfect numbers

A positive integer n is called a bi-unitary multik-perfectnumber if σ**(n) = kn where σ**(n) is the sum of its bi-unitary divisors. This concept is due to Peter Hagis (1987). A bi-unitary multiply perfect number is simply a bi-unitary multi k-perfect number for some positive integer k. Equivalently, bi-unitary multiply perfect numbers are those n for which n divides σ**(n). A bi-unitary multi 2-perfect number is naturally called a bi-unitary perfect number, and a bi-unitary multi 3-perfect number is called a bi-unitary triperfect number.

A divisor d of a positive integer n is called a bi-unitary divisor of n if the greatest common unitary divisor (gcud) of d and n/d equals 1. This concept is due to D. Surynarayana (1972). The sum of the (positive) bi-unitary divisors of n is denoted by σ**(n).

Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers other than 1. Haukkanen and Sitaramaiah (2020) found all bi-unitary triperfect numbers of the form 2au where 1 ≤ a ≤ 6 and u is odd, [6] [7] [8] and partially the case where a = 7. [9] [10] Further, they fixed completely the case a = 8. [11]

The first few bi-unitary multiply perfect numbers are:

1, 6, 60, 90, 120, 672, 2160, 10080, 22848, 30240 (sequence A189000 in the OEIS )

Related Research Articles

<span class="mw-page-title-main">Amicable numbers</span> Pair of integers related by their divisors

Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function).

<span class="mw-page-title-main">Perfect number</span> Integer equal to the sum of its proper divisors

In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

A highly composite number is a positive integer with more divisors than any smaller positive integer has. A related concept is that of a largely composite number, a positive integer which has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers are not actually composite numbers; however, all further terms are.

<span class="mw-page-title-main">Abundant number</span> Number that is less than the sum of its proper divisors

In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

<span class="mw-page-title-main">Deficient number</span> Number whose divisor sum is less than itself

In number theory, a deficient number or defective number is a positive integer n for which the sum of divisors of n is less than 2n. Equivalently, it is a number for which the sum of proper divisors is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient.

In mathematics, a quasiperfect number is a natural number n for which the sum of all its divisors (the divisor function σ(n)) is equal to 2n + 1. Equivalently, n is the sum of its non-trivial divisors (that is, its divisors excluding 1 and n). No quasiperfect numbers have been found so far.

<span class="mw-page-title-main">Weird number</span> Number which is abundant but not semiperfect

In number theory, a weird number is a natural number that is abundant but not semiperfect. In other words, the sum of the proper divisors of the number is greater than the number, but no subset of those divisors sums to the number itself.

<span class="mw-page-title-main">Almost perfect number</span> Class of natural number

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficientnumber) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.

In number theory, a k-hyperperfect number is a natural number n for which the equality holds, where σ(n) is the divisor function (i.e., the sum of all positive divisors of n). A hyperperfect number is a k-hyperperfect number for some integer k. Hyperperfect numbers generalize perfect numbers, which are 1-hyperperfect.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself. Some perfect numbers are not unitary perfect numbers, and some unitary perfect numbers are not ordinary perfect numbers.

In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.

<span class="mw-page-title-main">Practical number</span> Number such that it and all smaller numbers may be represented as sums of its distinct divisors

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

<span class="mw-page-title-main">Colossally abundant number</span> Type of natural number

In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.

In number theory, friendly numbers are two or more natural numbers with a common abundancy index, the ratio between the sum of divisors of a number and the number itself. Two numbers with the same "abundancy" form a friendly pair; n numbers with the same "abundancy" form a friendly n-tuple.

In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.

In number theory, the Lagarias arithmetic derivative or number derivative is a function defined for integers, based on prime factorization, by analogy with the product rule for the derivative of a function that is used in mathematical analysis.

In number theory, a superperfect number is a positive integer n that satisfies

Betrothed numbers or quasi-amicable numbers are two positive integers such that the sum of the proper divisors of either number is one more than the value of the other number. In other words, (mn) are a pair of betrothed numbers if s(m) = n + 1 and s(n) = m + 1, where s(n) is the aliquot sum of n: an equivalent condition is that σ(m) = σ(n) = m + n + 1, where σ denotes the sum-of-divisors function.

References

  1. 1 2 3 4 5 Flammenkamp, Achim. "The Multiply Perfect Numbers Page" . Retrieved 22 January 2014.
  2. 1 2 3 Sándor, Mitrinović & Crstici 2006 , p. 105
  3. Dagal, Keneth Adrian P. (2013). "A Lower Bound for τ(n) for k-Multiperfect Number". arXiv: 1309.3527 [math.NT].
  4. 1 2 Sándor, Mitrinović & Crstici 2006 , p. 106
  5. Sándor, Mitrinović & Crstici 2006 , pp. 108–109
  6. Haukkanen & Sitaramaiah 2020a
  7. Haukkanen & Sitaramaiah 2020b
  8. Haukkanen & Sitaramaiah 2020c
  9. Haukkanen & Sitaramaiah 2020d
  10. Haukkanen & Sitaramaiah 2021a
  11. Haukkanen & Sitaramaiah 2021b

Sources

See also