Bell number

Last updated

In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s.

Contents

The Bell numbers are denoted , where is an integer greater than or equal to zero. Starting with , the first few Bell numbers are

(sequence A000110 in the OEIS ).

The Bell number counts the number of different ways to partition a set that has exactly elements, or equivalently, the number of equivalence relations on it. also counts the number of different rhyme schemes for -line poems. [1]

As well as appearing in counting problems, these numbers have a different interpretation, as moments of probability distributions. In particular, is the -th moment of a Poisson distribution with mean 1.

Counting

Set partitions

Partitions of sets can be arranged in a partial order, showing that each partition of a set of size n "uses" one of the partitions of a set of size n - 1. Bell numbers subset partial order.svg
Partitions of sets can be arranged in a partial order, showing that each partition of a set of size n "uses" one of the partitions of a set of size n  1.
The 52 partitions of a set with 5 elements Set partitions 5; circles.svg
The 52 partitions of a set with 5 elements

In general, is the number of partitions of a set of size . A partition of a set is defined as a family of nonempty, pairwise disjoint subsets of whose union is . For example, because the 3-element set can be partitioned in 5 distinct ways:

As suggested by the set notation above, the ordering of subsets within the family is not considered; ordered partitions are counted by a different sequence of numbers, the ordered Bell numbers. is 1 because there is exactly one partition of the empty set. This partition is itself the empty set; it can be interpreted as a family of subsets of the empty set, consisting of zero subsets. It is vacuously true that all of the subsets in this family are non-empty subsets of the empty set and that they are pairwise disjoint subsets of the empty set, because there are no subsets to have these unlikely properties.

The partitions of a set correspond one-to-one with its equivalence relations. These are binary relations that are reflexive, symmetric, and transitive. The equivalence relation corresponding to a partition defines two elements as being equivalent when they belong to the same partition subset as each other. Conversely, every equivalence relation corresponds to a partition into equivalence classes. [2] Therefore, the Bell numbers also count the equivalence relations.

Factorizations

If a number is a squarefree positive integer, meaning that it is the product of some number of distinct prime numbers), then gives the number of different multiplicative partitions of . These are factorizations of into numbers greater than one, treating two factorizations as the same if they have the same factors in a different order. [3] For instance, 30 is the product of the three primes 2, 3, and 5, and has = 5 factorizations:

Rhyme schemes

The Bell numbers also count the rhyme schemes of an n-line poem or stanza. A rhyme scheme describes which lines rhyme with each other, and so may be interpreted as a partition of the set of lines into rhyming subsets. Rhyme schemes are usually written as a sequence of Roman letters, one per line, with rhyming lines given the same letter as each other, and with the first lines in each rhyming set labeled in alphabetical order. Thus, the 15 possible four-line rhyme schemes are AAAA, AAAB, AABA, AABB, AABC, ABAA, ABAB, ABAC, ABBA, ABBB, ABBC, ABCA, ABCB, ABCC, and ABCD. [1]

Permutations

The Bell numbers come up in a card shuffling problem mentioned in the addendum to Gardner (1978). If a deck of n cards is shuffled by repeatedly removing the top card and reinserting it anywhere in the deck (including its original position at the top of the deck), with exactly n repetitions of this operation, then there are nn different shuffles that can be performed. Of these, the number that return the deck to its original sorted order is exactly Bn. Thus, the probability that the deck is in its original order after shuffling it in this way is Bn/nn, which is significantly larger than the 1/n! probability that would describe a uniformly random permutation of the deck.

Related to card shuffling are several other problems of counting special kinds of permutations that are also answered by the Bell numbers. For instance, the nth Bell number equals the number of permutations on n items in which no three values that are in sorted order have the last two of these three consecutive. In a notation for generalized permutation patterns where values that must be consecutive are written adjacent to each other, and values that can appear non-consecutively are separated by a dash, these permutations can be described as the permutations that avoid the pattern 1-23. The permutations that avoid the generalized patterns 12-3, 32-1, 3-21, 1-32, 3-12, 21-3, and 23-1 are also counted by the Bell numbers. [4] The permutations in which every 321 pattern (without restriction on consecutive values) can be extended to a 3241 pattern are also counted by the Bell numbers. [5] However, the Bell numbers grow too quickly to count the permutations that avoid a pattern that has not been generalized in this way: by the (now proven) Stanley–Wilf conjecture, the number of such permutations is singly exponential, and the Bell numbers have a higher asymptotic growth rate than that.

Triangle scheme for calculations

The triangular array whose right-hand diagonal sequence consists of Bell numbers BellNumberAnimated.gif
The triangular array whose right-hand diagonal sequence consists of Bell numbers

The Bell numbers can easily be calculated by creating the so-called Bell triangle, also called Aitken's array or the Peirce triangle after Alexander Aitken and Charles Sanders Peirce. [6]

  1. Start with the number one. Put this on a row by itself. ()
  2. Start a new row with the rightmost element from the previous row as the leftmost number ( where r is the last element of (i-1)-th row)
  3. Determine the numbers not on the left column by taking the sum of the number to the left and the number above the number to the left, that is, the number diagonally up and left of the number we are calculating
  4. Repeat step three until there is a new row with one more number than the previous row (do step 3 until )
  5. The number on the left hand side of a given row is the Bell number for that row. ()

Here are the first five rows of the triangle constructed by these rules:

The Bell numbers appear on both the left and right sides of the triangle.

Properties

Summation formulas

The Bell numbers satisfy a recurrence relation involving binomial coefficients: [7]

It can be explained by observing that, from an arbitrary partition of n + 1 items, removing the set containing the first item leaves a partition of a smaller set of k items for some number k that may range from 0 to n. There are choices for the k items that remain after one set is removed, and Bk choices of how to partition them.

A different summation formula represents each Bell number as a sum of Stirling numbers of the second kind

The Stirling number is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is the number of sets in the partition. [8]

Spivey (2008) has given a formula that combines both of these summations:

Applying Pascal's inversion formula to the recurrence relation, we obtain

Which can be generalized in this manner [9]

Other finite sum formulas using Stirling numbers of the first kind include [9]

Which simplifies down with to

and with to

which can be seen as the inversion formula for Stirling numbers applied to Spivey's formula.

Generating function

The exponential generating function of the Bell numbers is

In this formula, the summation in the middle is the general form used to define the exponential generating function for any sequence of numbers, and the formula on the right is the result of performing the summation in the specific case of the Bell numbers.

One way to derive this result uses analytic combinatorics, a style of mathematical reasoning in which sets of mathematical objects are described by formulas explaining their construction from simpler objects, and then those formulas are manipulated to derive the combinatorial properties of the objects. In the language of analytic combinatorics, a set partition may be described as a set of nonempty urns into which elements labelled from 1 to n have been distributed, and the combinatorial class of all partitions (for all n) may be expressed by the notation

Here, is a combinatorial class with only a single member of size one, an element that can be placed into an urn. The inner operator describes a set or urn that contains one or more labelled elements, and the outer describes the overall partition as a set of these urns. The exponential generating function may then be read off from this notation by translating the operator into the exponential function and the nonemptiness constraint ≥1 into subtraction by one. [10]

An alternative method for deriving the same generating function uses the recurrence relation for the Bell numbers in terms of binomial coefficients to show that the exponential generating function satisfies the differential equation . The function itself can be found by solving this equation. [11] [12] [13]

Moments of probability distributions

The Bell numbers satisfy Dobinski's formula [14] [11] [13]

This formula can be derived by expanding the exponential generating function using the Taylor series for the exponential function, and then collecting terms with the same exponent. [10] It allows Bn to be interpreted as the nth moment of a Poisson distribution with expected value 1.

The nth Bell number is also the sum of the coefficients in the nth complete Bell polynomial, which expresses the nth moment of any probability distribution as a function of the first n cumulants.

Modular arithmetic

The Bell numbers obey Touchard's congruence: If p is any prime number then [15]

or, generalizing [16]

Because of Touchard's congruence, the Bell numbers are periodic modulo p, for every prime number p; for instance, for p = 2, the Bell numbers repeat the pattern odd-odd-even with period three. The period of this repetition, for an arbitrary prime number p, must be a divisor of

and for all prime and , or it is exactly this number (sequence A001039 in the OEIS ). [17] [18]

The period of the Bell numbers to modulo n are

1, 3, 13, 12, 781, 39, 137257, 24, 39, 2343, 28531167061, 156, 25239592216021, 411771, 10153, 48, 51702516367896047761, 39, 109912203092239643840221, 9372, 1784341, 85593501183, 949112181811268728834319677753, 312, 3905, 75718776648063, 117, 1647084, 91703076898614683377208150526107718802981, 30459, 568972471024107865287021434301977158534824481, 96, 370905171793, 155107549103688143283, 107197717, 156, ... (sequence A054767 in the OEIS )

Integral representation

An application of Cauchy's integral formula to the exponential generating function yields the complex integral representation

Some asymptotic representations can then be derived by a standard application of the method of steepest descent. [19]

Log-concavity

The Bell numbers form a logarithmically convex sequence. Dividing them by the factorials, Bn/n!, gives a logarithmically concave sequence. [20] [21] [22]

Growth rate

Several asymptotic formulas for the Bell numbers are known. In Berend & Tassa (2010) the following bounds were established:

for all positive integers ;

moreover, if then for all ,

where and The Bell numbers can also be approximated using the Lambert W function, a function with the same growth rate as the logarithm, as [23]

Moser & Wyman (1955) established the expansion

uniformly for as , where and each and are known expressions in . [24]

The asymptotic expression

was established by de Bruijn (1981).

Bell primes

Gardner (1978) raised the question of whether infinitely many Bell numbers are also prime numbers. The first few Bell numbers that are prime are:

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837 (sequence A051131 in the OEIS )

corresponding to the indices 2, 3, 7, 13, 42 and 55 (sequence A051130 in the OEIS ).

The next Bell prime is B2841, which is approximately 9.30740105 × 106538. [25] As of 2018, it is the largest known prime Bell number. Ignacio Larrosa Cañestro showed it was a probable prime in 2002. After 17 months of computation with Marcel Martin's ECPP program Primo, Ignacio Larrosa Cañestro proved it to be prime in 2004. He ruled out any other possible primes below B6000, later extended to B30447 by Eric Weisstein. [26] The search was extended to B50000 by Václav Kotěšovec (05/18/2021).

History

The Bell numbers are named after Eric Temple Bell, who wrote about them in 1938, following up a 1934 paper in which he studied the Bell polynomials. [27] [28] Bell did not claim to have discovered these numbers; in his 1938 paper, he wrote that the Bell numbers "have been frequently investigated" and "have been rediscovered many times". Bell cites several earlier publications on these numbers, beginning with Dobiński (1877) which gives Dobiński's formula for the Bell numbers. Bell called these numbers "exponential numbers"; the name "Bell numbers" and the notation Bn for these numbers was given to them by Becker & Riordan (1948). [29]

The first exhaustive enumeration of set partitions appears to have occurred in medieval Japan, where (inspired by the popularity of the book The Tale of Genji ) a parlor game called genji-ko sprang up, in which guests were given five packets of incense to smell and were asked to guess which ones were the same as each other and which were different. The 52 possible solutions, counted by the Bell number B5, were recorded by 52 different diagrams, which were printed above the chapter headings in some editions of The Tale of Genji. [30] [31]

In Srinivasa Ramanujan's second notebook, he investigated both Bell polynomials and Bell numbers. [32] Early references for the Bell triangle, which has the Bell numbers on both of its sides, include Peirce (1880) and Aitken (1933).

See also

Notes

  1. 1 2 Gardner 1978.
  2. Halmos, Paul R. (1974). Naive set theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg. pp. 27–28. ISBN   9781475716450. MR   0453532.
  3. Williams 1945 credits this observation to Silvio Minetola's Principii di Analisi Combinatoria (1909).
  4. Claesson (2001).
  5. Callan (2006).
  6. Sloane, N. J. A. (ed.). "SequenceA011971(Aitken's array)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  7. Wilf 1994, p. 23.
  8. Conway & Guy (1996).
  9. 1 2 Komatsu, Takao; Pita-Ruiz, Claudio (2018). "Some formulas for Bell numbers". Filomat. 32 (11): 3881–3889. doi: 10.2298/FIL1811881K . ISSN   0354-5180.
  10. 1 2 Flajolet & Sedgewick 2009.
  11. 1 2 Rota 1964.
  12. Wilf 1994, pp. 20–23.
  13. 1 2 Bender & Williamson 2006.
  14. Dobiński 1877.
  15. Becker & Riordan (1948).
  16. Hurst & Schultz (2009).
  17. Williams 1945.
  18. Wagstaff 1996.
  19. Simon, Barry (2010). "Example 15.4.6 (Asymptotics of Bell Numbers)". Complex Analysis (PDF). pp. 772–774. Archived from the original (PDF) on 2014-01-24. Retrieved 2012-09-02.
  20. Engel 1994.
  21. Canfield 1995.
  22. Asai, Kubo & Kuo 2000.
  23. Lovász (1993).
  24. Canfield, Rod (July 1994). "The Moser-Wyman expansion of the Bell numbers" (PDF). Retrieved 2013-10-24.
  25. "93074010508593618333...83885253703080601131". 5000 Largest Known Primes, The Prime Database. Retrieved 2013-10-24.
  26. Weisstein, Eric W. "Integer Sequence Primes". MathWorld .
  27. Bell 1934.
  28. Bell 1938.
  29. Rota 1964. However, Rota gives an incorrect date, 1934, for Becker & Riordan 1948.
  30. Knuth 2013.
  31. Gardner 1978 and Berndt 2011 also mention the connection between Bell numbers and The Tale of Genji, in less detail.
  32. Berndt 2011.

Related Research Articles

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. So, two combinations are identical if and only if each combination has the same members. If the set has n elements, the number of k-combinations, denoted by or , is equal to the binomial coefficient

In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial:

In mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion

<span class="mw-page-title-main">Birthday problem</span> Mathematical problem

In probability theory, the birthday problem asks for the probability that, in a set of n randomly chosen people, at least two will share a birthday. The birthday paradox refers to the counterintuitive fact that only 23 people are needed for that probability to exceed 50%.

In mathematics, Stirling numbers arise in a variety of analytic and combinatorial problems. They are named after James Stirling, who introduced them in a purely algebraic setting in his book Methodus differentialis (1730). They were rediscovered and given a combinatorial meaning by Masanobu Saka in 1782.

<span class="mw-page-title-main">Catalan number</span> Recursive integer sequence

In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan.

In mathematics, the falling factorial is defined as the polynomial

The Touchard polynomials, studied by Jacques Touchard, also called the exponential polynomials or Bell polynomials, comprise a polynomial sequence of binomial type defined by

<span class="mw-page-title-main">Inclusion–exclusion principle</span> Counting technique in combinatorics

In combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as

In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in Faà di Bruno's formula.

In combinatorial mathematics, the exponential formula states that the exponential generating function for structures on finite sets is the exponential of the exponential generating function for connected structures. The exponential formula is a power series version of a special case of Faà di Bruno's formula.

In combinatorial mathematics, Dobiński's formula states that the n-th Bell number Bn equals

<span class="mw-page-title-main">Stirling numbers of the second kind</span> Numbers parameterizing ways to partition a set

In mathematics, particularly in combinatorics, a Stirling number of the second kind is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or . Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling.

In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles.

In combinatorial mathematics, an alternating permutation of the set {1, 2, 3, ..., n} is a permutation (arrangement) of those numbers so that each entry is alternately greater or less than the preceding entry. For example, the five alternating permutations of {1, 2, 3, 4} are:

<span class="mw-page-title-main">Eulerian number</span> Polynomial sequence

In combinatorics, the Eulerian number is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element.

<span class="mw-page-title-main">Ordered Bell number</span> Number of weak orderings

In number theory and enumerative combinatorics, the ordered Bell numbers or Fubini numbers count the number of weak orderings on a set of elements. Weak orderings arrange their elements into a sequence allowing ties, such as might arise as the outcome of a horse race). Starting from , these numbers are

<span class="mw-page-title-main">Telephone number (mathematics)</span> Number of ways to pair up n objects

In mathematics, the telephone numbers or the involution numbers form a sequence of integers that count the ways n people can be connected by person-to-person telephone calls. These numbers also describe the number of matchings of a complete graph on n vertices, the number of permutations on n elements that are involutions, the sum of absolute values of coefficients of the Hermite polynomials, the number of standard Young tableaux with n cells, and the sum of the degrees of the irreducible representations of the symmetric group. Involution numbers were first studied in 1800 by Heinrich August Rothe, who gave a recurrence equation by which they may be calculated, giving the values

References