Stirling number

Last updated

In mathematics, Stirling numbers arise in a variety of analytic and combinatorial problems. They are named after James Stirling, who introduced them in a purely algebraic setting in his book Methodus differentialis (1730). [1] They were rediscovered and given a combinatorial meaning by Masanobu Saka in 1782. [2]

Contents

Two different sets of numbers bear this name: the Stirling numbers of the first kind and the Stirling numbers of the second kind. Additionally, Lah numbers are sometimes referred to as Stirling numbers of the third kind. Each kind is detailed in its respective article, this one serving as a description of relations between them.

A common property of all three kinds is that they describe coefficients relating three different sequences of polynomials that frequently arise in combinatorics. Moreover, all three can be defined as the number of partitions of n elements into k non-empty subsets, where each subset is endowed with a certain kind of order (no order, cyclical, or linear).

Notation

Several different notations for Stirling numbers are in use. Ordinary (signed) Stirling numbers of the first kind are commonly denoted:

Unsigned Stirling numbers of the first kind, which count the number of permutations of n elements with k disjoint cycles, are denoted:

Stirling numbers of the second kind, which count the number of ways to partition a set of n elements into k nonempty subsets: [3]

Abramowitz and Stegun use an uppercase and a blackletter , respectively, for the first and second kinds of Stirling number. The notation of brackets and braces, in analogy to binomial coefficients, was introduced in 1935 by Jovan Karamata and promoted later by Donald Knuth. (The bracket notation conflicts with a common notation for Gaussian coefficients. [4] ) The mathematical motivation for this type of notation, as well as additional Stirling number formulae, may be found on the page for Stirling numbers and exponential generating functions.

Another infrequent notation is and .

Expansions of falling and rising factorials

Stirling numbers express coefficients in expansions of falling and rising factorials (also known as the Pochhammer symbol) as polynomials.

That is, the falling factorial, defined as is a polynomial in x of degree n whose expansion is

with (signed) Stirling numbers of the first kind as coefficients.

Note that by convention, because it is an empty product. The notations for the falling factorial and for the rising factorial are also often used. [5] (Confusingly, the Pochhammer symbol that many use for falling factorials is used in special functions for rising factorials.)

Similarly, the rising factorial, defined as is a polynomial in x of degree n whose expansion is

with unsigned Stirling numbers of the first kind as coefficients. One of these expansions can be derived from the other by observing that

Stirling numbers of the second kind express the reverse relations:

and

As change of basis coefficients

Considering the set of polynomials in the (indeterminate) variable x as a vector space, each of the three sequences

is a basis. That is, every polynomial in x can be written as a sum for some unique coefficients (similarly for the other two bases). The above relations then express the change of basis between them, as summarized in the following commutative diagram:

Stirling numbers as polynomial basis change.svg

The coefficients for the two bottom changes are described by the Lah numbers below. Since coefficients in any basis are unique, one can define Stirling numbers this way, as the coefficients expressing polynomials of one basis in terms of another, that is, the unique numbers relating with falling and rising factorials as above.

Falling factorials define, up to scaling, the same polynomials as binomial coefficients: . The changes between the standard basis and the basis are thus described by similar formulas:

.

Example

Expressing a polynomial in the basis of falling factorials is useful for calculating sums of the polynomial evaluated at consecutive integers. Indeed, the sum of falling factorials with fixed k can expressed as another falling factorial (for )

This can be proved by induction.

For example, the sum of fourth powers of integers up to n (this time with n included), is:

Here the Stirling numbers can be computed from their definition as the number of partitions of 4 elements into k non-empty unlabeled subsets.

In contrast, the sum in the standard basis is given by Faulhaber's formula, which in general is more complicated.

As inverse matrices

The Stirling numbers of the first and second kinds can be considered inverses of one another:

and

where is the Kronecker delta. These two relationships may be understood to be matrix inverse relationships. That is, let s be the lower triangular matrix of Stirling numbers of the first kind, whose matrix elements The inverse of this matrix is S, the lower triangular matrix of Stirling numbers of the second kind, whose entries are Symbolically, this is written

Although s and S are infinite, so calculating a product entry involves an infinite sum, the matrix multiplications work because these matrices are lower triangular, so only a finite number of terms in the sum are nonzero.

Lah numbers

The Lah numbers are sometimes called Stirling numbers of the third kind. [6] By convention, and if or .

These numbers are coefficients expressing falling factorials in terms of rising factorials and vice versa:

and

As above, this means they express the change of basis between the bases and , completing the diagram. In particular, one formula is the inverse of the other, thus:

Similarly, composing the change of basis from to with the change of basis from to gives the change of basis directly from to :

and similarly for other compositions. In terms of matrices, if denotes the matrix with entries and denotes the matrix with entries , then one is the inverse of the other: . Composing the matrix of unsigned Stirling numbers of the first kind with the matrix of Stirling numbers of the second kind gives the Lah numbers: .

Enumeratively, can be defined as the number of partitions of n elements into k non-empty unlabeled subsets, where each subset is endowed with no order, a cyclic order, or a linear order, respectively. In particular, this implies the inequalities:

Inversion relations and the Stirling transform

For any pair of sequences, and , related by a finite sum Stirling number formula given by

for all integers , we have a corresponding inversion formula for given by

The lower indices could be any integer between and .

These inversion relations between the two sequences translate into functional equations between the sequence exponential generating functions given by the Stirling (generating function) transform as

and

For , the differential operators and are related by the following formulas for all integers : [7]

Another pair of "inversion" relations involving the Stirling numbers relate the forward differences and the ordinary derivatives of a function, , which is analytic for all by the formulas [8]

Similar properties

Table of similarities
Stirling numbers of the first kind Stirling numbers of the second kind
, where is the n-th Bell number
, where is the rising factorials , where is the Touchard polynomials

See the specific articles for details.

Symmetric formulae

Abramowitz and Stegun give the following symmetric formulae that relate the Stirling numbers of the first and second kind. [9]

and

Stirling numbers with negative integral values

The Stirling numbers can be extended to negative integral values, but not all authors do so in the same way. [10] [11] [12] Regardless of the approach taken, it is worth noting that Stirling numbers of first and second kind are connected by the relations:

when n and k are nonnegative integers. So we have the following table for :

k
n
−1−2−3−4−5
−111111
−2013715
−3001625
−4000110
−500001

Donald Knuth [12] defined the more general Stirling numbers by extending a recurrence relation to all integers. In this approach, and are zero if n is negative and k is nonnegative, or if n is nonnegative and k is negative, and so we have, for any integers n and k,

On the other hand, for positive integers n and k, David Branson [11] defined and (but not or ). In this approach, one has the following extension of the recurrence relation of the Stirling numbers of the first kind:

,

For example, This leads to the following table of values of for negative integral n.

k
n
01234
−111111
−2
−3
−4
−5

In this case where is a Bell number, and so one may define the negative Bell numbers by .

For example, this produces , generally .

See also

Citations

  1. Mansour & Schork 2015, p. 5.
  2. Mansour & Schork 2015, p. 4.
  3. Ronald L. Graham, Donald E. Knuth, Oren Patashnik (1988) Concrete Mathematics , Addison-Wesley, Reading MA. ISBN   0-201-14236-8, p. 244.
  4. Donald Knuth
  5. Aigner, Martin (2007). "Section 1.2 - Subsets and binomial coefficients". A Course in Enumeration . Springer. pp.  561. ISBN   978-3-540-39032-9.
  6. Sándor, Jozsef; Crstici, Borislav (2004). Handbook of Number Theory II. Kluwer Academic Publishers. p. 464. ISBN   9781402025464.
  7. Concrete Mathematics exercise 13 of section 6. Note that this formula immediately implies the first positive-order Stirling number transformation given in the main article on generating function transformations.
  8. Olver, Frank; Lozier, Daniel; Boisvert, Ronald; Clark, Charles (2010). "NIST Handbook of Mathematical Functions". NIST Handbook of Mathematical Functions. (Section 26.8)
  9. Goldberg, K.; Newman, M; Haynsworth, E. (1972), "Stirling Numbers of the First Kind, Stirling Numbers of the Second Kind", in Abramowitz, Milton; Stegun, Irene A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th printing, New York: Dover, pp. 824–825
  10. Loeb, Daniel E. (1992) [Received 3 Nov 1989]. "A generalization of the Stirling numbers". Discrete Mathematics. 103 (3): 259–269. doi: 10.1016/0012-365X(92)90318-A .
  11. 1 2 Branson, David (August 1994). "An extension of Stirling numbers" (PDF). The Fibonacci Quarterly. Archived (PDF) from the original on 2011-08-27. Retrieved Dec 6, 2017.
  12. 1 2 D.E. Knuth, 1992.

Related Research Articles

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

In mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion

<span class="mw-page-title-main">Lah number</span> Mathematical sequence

In mathematics, the (signed and unsigned) Lah numbers are coefficients expressing rising factorials in terms of falling factorials and vice versa. They were discovered by Ivo Lah in 1954. Explicitly, the unsigned Lah numbers are given by the formula involving the binomial coefficient

In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s.

<span class="mw-page-title-main">Lagrange polynomial</span> Polynomials used for interpolation

In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data.

In mathematics, the falling factorial is defined as the polynomial

In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

The Touchard polynomials, studied by Jacques Touchard, also called the exponential polynomials or Bell polynomials, comprise a polynomial sequence of binomial type defined by

<span class="mw-page-title-main">Double factorial</span> Mathematical function

In mathematics, the double factorial of a number n, denoted by n, is the product of all the positive integers up to n that have the same parity as n. That is,

In probability theory, the factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable. Factorial moments are useful for studying non-negative integer-valued random variables, and arise in the use of probability-generating functions to derive the moments of discrete random variables.

In combinatorics, Vandermonde's identity is the following identity for binomial coefficients:

<span class="mw-page-title-main">Stirling numbers of the second kind</span> Numbers parameterizing ways to partition a set

In mathematics, particularly in combinatorics, a Stirling number of the second kind is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or . Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling.

In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles.

In mathematics, the Stirling polynomials are a family of polynomials that generalize important sequences of numbers appearing in combinatorics and analysis, which are closely related to the Stirling numbers, the Bernoulli numbers, and the generalized Bernoulli polynomials. There are multiple variants of the Stirling polynomial sequence considered below most notably including the Sheffer sequence form of the sequence, , defined characteristically through the special form of its exponential generating function, and the Stirling (convolution) polynomials, , which also satisfy a characteristic ordinary generating function and that are of use in generalizing the Stirling numbers to arbitrary complex-valued inputs. We consider the "convolution polynomial" variant of this sequence and its properties second in the last subsection of the article. Still other variants of the Stirling polynomials are studied in the supplementary links to the articles given in the references.

<span class="mw-page-title-main">Eulerian number</span> Polynomial sequence

In combinatorics, the Eulerian number is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element.

In mathematics, Faulhaber's formula, named after the early 17th century mathematician Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers

In mathematics, the Schuette–Nesbitt formula is a generalization of the inclusion–exclusion principle. It is named after Donald R. Schuette and Cecil J. Nesbitt.

In mathematics, a transformation of a sequence's generating function provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas applied to a sequence generating function or weighted sums over the higher-order derivatives of these functions.

References

Further reading