Untouchable number

Last updated

In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi (circa 1000 AD), who observed that both 2 and 5 are untouchable. [1]

Contents

Examples

If we draw an arrow pointing from each positive integer to the sum of all its proper divisors, there will be no arrow pointing to untouchable numbers like 2 and 5. Aliquot sums and untouchable numbers.pdf
If we draw an arrow pointing from each positive integer to the sum of all its proper divisors, there will be no arrow pointing to untouchable numbers like 2 and 5.

The first few untouchable numbers are

2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, 238, 246, 248, 262, 268, 276, 288, 290, 292, 304, 306, 322, 324, 326, 336, 342, 372, 406, 408, 426, 430, 448, 472, 474, 498, ... (sequence A005114 in the OEIS ).

Properties

Unsolved problem in mathematics:
Are there any odd untouchable numbers other than 5?

The number 5 is believed to be the only odd untouchable number, but this has not been proven. It would follow from a slightly stronger version of the Goldbach conjecture, since the sum of the proper divisors of pq (with p, q distinct primes) is 1 + p + q. Thus, if a number n can be written as a sum of two distinct primes, then n + 1 is not an untouchable number. It is expected that every even number larger than 6 is a sum of two distinct primes, so probably no odd number larger than 7 is an untouchable number, and , , , so only 5 can be an odd untouchable number. [2] Thus it appears that besides 2 and 5, all untouchable numbers are composite numbers (since except 2, all even numbers are composite). No perfect number is untouchable, since, at the very least, it can be expressed as the sum of its own proper divisors. Similarly, none of the amicable numbers or sociable numbers are untouchable. Also, none of the Mersenne numbers are untouchable, since Mn = 2n − 1 is equal to the sum of the proper divisors of 2n.

No untouchable number is one more than a prime number, since if p is prime, then the sum of the proper divisors of p2 is p + 1. Also, no untouchable number is three more than a prime number, except 5, since if p is an odd prime then the sum of the proper divisors of 2p is p + 3.

Infinitude

There are infinitely many untouchable numbers, a fact that was proven by Paul Erdős. [3] According to Chen & Zhao, their natural density is at least d > 0.06. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Amicable numbers</span> Pair of integers related by their divisors

Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function).

<span class="mw-page-title-main">Perfect number</span> Integer equal to the sum of its proper divisors

In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

<span class="mw-page-title-main">Divisor</span> Integer that is a factor of another integer

In mathematics, a divisor of an integer also called a factor of is an integer that may be multiplied by some integer to produce In this case, one also says that is a multiple of An integer is divisible or evenly divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder.

<span class="mw-page-title-main">Abundant number</span> Number that is less than the sum of its proper divisors

In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

<span class="mw-page-title-main">Deficient number</span> Number whose divisor sum is less than itself

In number theory, a deficient number or defective number is a positive integer n for which the sum of divisors of n is less than 2n. Equivalently, it is a number for which the sum of proper divisors is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient.

<span class="mw-page-title-main">Weird number</span> Number which is abundant but not semiperfect

In number theory, a weird number is a natural number that is abundant but not semiperfect. In other words, the sum of the proper divisors of the number is greater than the number, but no subset of those divisors sums to the number itself.

<span class="mw-page-title-main">Almost perfect number</span> Numbers whose sum of divisors is twice the number minus 1

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficientnumber) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.

34 (thirty-four) is the natural number following 33 and preceding 35.

64 (sixty-four) is the natural number following 63 and preceding 65.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

In mathematics, a harmonic divisor number or Ore number is a positive integer whose divisors have a harmonic mean that is an integer. The first few harmonic divisor numbers are

In mathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0.

<span class="mw-page-title-main">Practical number</span> Number such that it and all smaller numbers may be represented as sums of its distinct divisors

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

In mathematics, a superabundant number is a certain kind of natural number. A natural number n is called superabundant precisely when, for all m < n:

<span class="mw-page-title-main">Colossally abundant number</span> Type of natural number

In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.

In number theory, friendly numbers are two or more natural numbers with a common abundancy index, the ratio between the sum of divisors of a number and the number itself. Two numbers with the same "abundancy" form a friendly pair; n numbers with the same abundancy form a friendly n-tuple.

177 is the natural number following 176 and preceding 178.

In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.

In number theory, the aliquot sums(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is,

In number theory, a superperfect number is a positive integer n that satisfies

References

  1. Sesiano, J. (1991), "Two problems of number theory in Islamic times", Archive for History of Exact Sciences, 41 (3): 235–238, doi:10.1007/BF00348408, JSTOR   41133889, MR   1107382, S2CID   115235810
  2. The stronger version is obtained by adding to the Goldbach conjecture the further requirement that the two primes be distinct—see Adams-Watters, Frank & Weisstein, Eric W. "Untouchable Number". MathWorld .
  3. P. Erdos, Über die Zahlen der Form und . Elemente der Math. 28 (1973), 83-86
  4. Yong-Gao Chen and Qing-Qing Zhao, Nonaliquot numbers, Publ. Math. Debrecen 78:2 (2011), pp. 439-442.