In mathematics, a superabundant number is a certain kind of natural number. A natural number n is called superabundant precisely when, for all m<n:
where σ denotes the sum-of-divisors function (i.e., the sum of all positive divisors of n, including n itself). The first few superabundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ...(sequence A004394 in the OEIS ). For example, the number 5 is not a superabundant number because for 1, 2, 3, 4, and 5, the sigma is 1, 3, 4, 7, 6, and 7/4 > 6/5.
Superabundant numbers were defined by LeonidasAlaoglu and Paul Erdős ( 1944 ). Unknown to Alaoglu and Erdős, about 30 pages of Ramanujan's 1915 paper "Highly Composite Numbers" were suppressed. Those pages were finally published in The Ramanujan Journal 1 (1997), 119–153. In section 59 of that paper, Ramanujan defines generalized highly composite numbers, which include the superabundant numbers.
LeonidasAlaoglu and Paul Erdős ( 1944 ) proved that if n is superabundant, then there exist a k and a1, a2, ..., ak such that
where pi is the i-th prime number, and
That is, they proved that if n is superabundant, the prime decomposition of n has non-increasing exponents (the exponent of a larger prime is never more than that a smaller prime) and that all primes up to are factors of n. Then in particular any superabundant number is an even integer, and it is a multiple of the k-th primorial
In fact, the last exponent ak is equal to 1 except when n is 4 or 36.
Superabundant numbers are closely related to highly composite numbers. Not all superabundant numbers are highly composite numbers. In fact, only 449 superabundant and highly composite numbers are the same (sequence A166981 in the OEIS ). For instance, 7560 is highly composite but not superabundant. Conversely, 1163962800 is superabundant but not highly composite.
Alaoglu and Erdős observed that all superabundant numbers are highly abundant.
Not all superabundant numbers are Harshad numbers. The first exception is the 105th superabundant number, 149602080797769600. The digit sum is 81, but 81 does not divide evenly into this superabundant number.
Superabundant numbers are also of interest in connection with the Riemann hypothesis, and with Robin's theorem that the Riemann hypothesis is equivalent to the statement that
for all n greater than the largest known exception, the superabundant number 5040. If this inequality has a larger counterexample, proving the Riemann hypothesis to be false, the smallest such counterexample must be a superabundant number ( Akbary & Friggstad 2009 ).
Not all superabundant numbers are colossally abundant.
The generalized -super abundant numbers are those such that for all , where is the sum of the -th powers of the divisors of .
1-super abundant numbers are superabundant numbers. 0-super abundant numbers are highly composite numbers.
For example, generalized 2-super abundant numbers are 1, 2, 4, 6, 12, 24, 48, 60, 120, 240, ... (sequence A208767 in the OEIS )
In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as
A highly composite number is a positive integer that has more divisors than any smaller positive integer. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers are not actually composite numbers; however, all further terms are.
The tables below list all of the divisors of the numbers 1 to 1000.
In mathematics, a multiply perfect number is a generalization of a perfect number.
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.
In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.
In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
5040 is the natural number following 5039 and preceding 5041.
In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.
In number theory, a highly abundant number is a natural number with the property that the sum of its divisors is greater than the sum of the divisors of any smaller natural number.
In number theory, a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors. Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.
Giuseppe Melfi is an Italo-Swiss mathematician who works on practical numbers and modular forms.
In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.
288 is the natural number following 287 and preceding 289. Because 288 = 2 · 12 · 12, it may also be called "two gross" or "two dozen dozen".
Leonidas (Leon) Alaoglu was a mathematician, known for his result, called Alaoglu's theorem on the weak-star compactness of the closed unit ball in the dual of a normed space, also known as the Banach–Alaoglu theorem.
In mathematics, specifically in number theory, the extremal orders of an arithmetic function are best possible bounds of the given arithmetic function. Specifically, if f(n) is an arithmetic function and m(n) is a non-decreasing function that is ultimately positive and
840 is the natural number following 839 and preceding 841.