This article needs additional citations for verification .(January 2021) |
A cyclic number is an integer for which cyclic permutations of the digits are successive integer multiples of the number. The most widely known is the six-digit number 142857, whose first six integer multiples are
To qualify as a cyclic number, it is required that consecutive multiples be cyclic permutations. Thus, the number 076923 would not be considered a cyclic number, because even though all cyclic permutations are multiples, they are not consecutive integer multiples:
The following trivial cases are typically excluded:
If leading zeros are not permitted on numerals, then 142857 is the only cyclic number in decimal, due to the necessary structure given in the next section. Allowing leading zeros, the sequence of cyclic numbers begins:
Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of
Conversely, if the digital period of 1/p (where p is prime) is
then the digits represent a cyclic number.
For example:
Multiples of these fractions exhibit cyclic permutation:
From the relation to unit fractions, it can be shown that cyclic numbers are of the form of the Fermat quotient
where b is the number base (10 for decimal), and p is a prime that does not divide b. (Primes p that give cyclic numbers in base b are called full reptend primes or long primes in base b).
For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497.
Not all values of p will yield a cyclic number using this formula; for example, the case b = 10, p = 13 gives 076923076923, and the case b = 12, p = 19 gives 076B45076B45076B45. These failed cases will always contain a repetition of digits (possibly several).
The first values of p for which this formula produces cyclic numbers in decimal (b = 10) are (sequence A001913 in the OEIS )
For b = 12 (duodecimal), these ps are (sequence A019340 in the OEIS )
For b = 2 (binary), these ps are (sequence A001122 in the OEIS )
For b = 3 (ternary), these ps are (sequence A019334 in the OEIS )
There are no such ps in the hexadecimal system.
The known pattern to this sequence comes from algebraic number theory, specifically, this sequence is the set of primes p such that b is a primitive root modulo p. A conjecture of Emil Artin [1] is that this sequence contains 37.395..% of the primes (for b in OEIS: A085397 ).
Cyclic numbers can be constructed by the following procedure:
Let b be the number base (10 for decimal)
Let p be a prime that does not divide b.
Let t = 0.
Let r = 1.
Let n = 0.
loop:
if t = p − 1 then n is a cyclic number.
This procedure works by computing the digits of 1/p in base b, by long division. r is the remainder at each step, and d is the digit produced.
The step
serves simply to collect the digits. For computers not capable of expressing very large integers, the digits may be output or collected in another way.
If t ever exceeds p/2, then the number must be cyclic, without the need to compute the remaining digits.
Using the above technique, cyclic numbers can be found in other numeric bases. (Not all of these follow the second rule (all successive multiples being cyclic permutations) listed in the Special Cases section above) In each of these cases, the digits across half the period add up to the base minus one. Thus for binary, the sum of the bits across half the period is 1; for ternary, it is 2, and so on.
In binary, the sequence of cyclic numbers begins: (sequence A001122 in the OEIS )
In ternary: (sequence A019334 in the OEIS )
In quaternary, there are none.
In quinary: (sequence A019335 in the OEIS )
In senary: (sequence A167794 in the OEIS )
In base 7: (sequence A019337 in the OEIS )
In octal: (sequence A019338 in the OEIS )
In nonary, the unique cyclic number is
In base 11: (sequence A019339 in the OEIS )
In duodecimal: (sequence A019340 in the OEIS )
In ternary (b = 3), the case p = 2 yields 1 as a cyclic number. While single digits may be considered trivial cases, it may be useful for completeness of the theory to consider them only when they are generated in this way.
It can be shown that no cyclic numbers (other than trivial single digits, i.e. p = 2) exist in any numeric base which is a perfect square, that is, base 4, 9, 16, 25, etc.
A palindromic number is a number that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term palindromic is derived from palindrome, which refers to a word whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers are:
10 (ten) is the even natural number following 9 and preceding 11. Ten is the base of the decimal numeral system, the most common system of denoting numbers in both spoken and written language.
11 (eleven) is the natural number following 10 and preceding 12. It is the first repdigit. In English, it is the smallest positive integer whose name has three syllables.
In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system. The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes.
22 (twenty-two) is the natural number following 21 and preceding 23.
27 is the natural number following 26 and preceding 28.
79 (seventy-nine) is the natural number following 78 and preceding 80.
73 (seventy-three) is the natural number following 72 and preceding 74. In English, it is the smallest natural number with twelve letters in its spelled out name.
31 (thirty-one) is the natural number following 30 and preceding 32. It is a prime number.
A permutable prime, also known as anagrammatic prime, is a prime number which, in a given base, can have its digits' positions switched through any permutation and still be a prime number. H. E. Richert, who is supposedly the first to study these primes, called them permutable primes, but later they were also called absolute primes.
1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.
700 is the natural number following 699 and preceding 701.
The number 142,857 is a Kaprekar number.
229 is the natural number following 228 and preceding 230.
A Friedman number is an integer, which represented in a given numeral system, is the result of a non-trivial expression using all its own digits in combination with any of the four basic arithmetic operators (+, −, ×, ÷), additive inverses, parentheses, exponentiation, and concatenation. Here, non-trivial means that at least one operation besides concatenation is used. Leading zeros cannot be used, since that would also result in trivial Friedman numbers, such as 024 = 20 + 4. For example, 347 is a Friedman number in the decimal numeral system, since 347 = 73 + 4. The decimal Friedman numbers are:
181 is the natural number following 180 and preceding 182.
In number theory, a full reptend prime, full repetend prime, proper prime or long prime in base b is an odd prime number p such that the Fermat quotient
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating. For example, the decimal representation of 1/3 becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is 3227/555, whose decimal becomes periodic at the second digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... Another example of this is 593/53, which becomes periodic after the decimal point, repeating the 13-digit pattern "1886792452830" forever, i.e. 11.18867924528301886792452830....
The digits of some specific integers permute or shift cyclically when they are multiplied by a number n. Examples are: