Table of divisors

Last updated

Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics. Highly composite numbers.svg
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics.

The tables below list all of the divisors of the numbers 1 to 1000.

Contents

A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).

If m is a divisor of n, then so is m. The tables below only list positive divisors.

Key to the tables

1 to 100

nDivisorsd(n)σ(n)s(n)Notes
1 1110 deficient, highly abundant, highly composite
2 1, 2231deficient, highly abundant, prime, highly composite, superior highly composite
3 1, 3241deficient, highly abundant, prime
4 1, 2, 4373deficient, highly abundant, composite, highly composite
5 1, 5261deficient, prime
6 1, 2, 3, 64126 perfect, highly abundant, composite, highly composite, superior highly composite
7 1, 7281deficient, prime
8 1, 2, 4, 84157deficient, highly abundant, composite
9 1, 3, 93134deficient, composite
10 1, 2, 5, 104188deficient, highly abundant, composite
11 1, 112121deficient, prime
12 1, 2, 3, 4, 6, 1262816 abundant, highly abundant, composite, highly composite, superior highly composite
13 1, 132141deficient, prime
14 1, 2, 7, 1442410deficient, composite
15 1, 3, 5, 154249deficient, composite
16 1, 2, 4, 8, 1653115deficient, highly abundant, composite
17 1, 172181deficient, prime
18 1, 2, 3, 6, 9, 1863921abundant, highly abundant, composite
19 1, 192201deficient, prime
20 1, 2, 4, 5, 10, 2064222abundant, highly abundant, composite, primitive abundant
nDivisorsd(n)σ(n)s(n)Notes
21 1, 3, 7, 2143211deficient, composite
22 1, 2, 11, 2243614deficient, composite
23 1, 232241deficient, prime
24 1, 2, 3, 4, 6, 8, 12, 2486036abundant, highly abundant, composite, highly composite
25 1, 5, 253316deficient, composite
26 1, 2, 13, 2644216deficient, composite
27 1, 3, 9, 2744013deficient, composite
28 1, 2, 4, 7, 14, 2865628perfect, composite
29 1, 292301deficient, prime
30 1, 2, 3, 5, 6, 10, 15, 3087242abundant, highly abundant, composite
31 1, 312321deficient, prime
32 1, 2, 4, 8, 16, 3266331deficient, composite
33 1, 3, 11, 3344815deficient, composite
34 1, 2, 17, 3445420deficient, composite
35 1, 5, 7, 3544813deficient, composite
36 1, 2, 3, 4, 6, 9, 12, 18, 3699155abundant, highly abundant, composite, highly composite
37 1, 372381deficient, prime
38 1, 2, 19, 3846022deficient, composite
39 1, 3, 13, 3945617deficient, composite
40 1, 2, 4, 5, 8, 10, 20, 4089050abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
41 1, 412421deficient, prime
42 1, 2, 3, 6, 7, 14, 21, 4289654abundant, highly abundant, composite
43 1, 432441deficient, prime
44 1, 2, 4, 11, 22, 4468440deficient, composite
45 1, 3, 5, 9, 15, 4567833deficient, composite
46 1, 2, 23, 4647226deficient, composite
47 1, 472481deficient, prime
48 1, 2, 3, 4, 6, 8, 12, 16, 24, 481012476abundant, highly abundant, composite, highly composite
49 1, 7, 493578deficient, composite
50 1, 2, 5, 10, 25, 5069343deficient, composite
51 1, 3, 17, 5147221deficient, composite
52 1, 2, 4, 13, 26, 5269846deficient, composite
53 1, 532541deficient, prime
54 1, 2, 3, 6, 9, 18, 27, 54812066abundant, composite
55 1, 5, 11, 5547217deficient, composite
56 1, 2, 4, 7, 8, 14, 28, 56812064abundant, composite
57 1, 3, 19, 5748023deficient, composite
58 1, 2, 29, 5849032deficient, composite
59 1, 592601deficient, prime
60 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 6012168108abundant, highly abundant, composite, highly composite, superior highly composite
nDivisorsd(n)σ(n)s(n)Notes
61 1, 612621deficient, prime
62 1, 2, 31, 6249634deficient, composite
63 1, 3, 7, 9, 21, 63610441deficient, composite
64 1, 2, 4, 8, 16, 32, 64712763deficient, composite
65 1, 5, 13, 6548419deficient, composite
66 1, 2, 3, 6, 11, 22, 33, 66814478abundant, composite
67 1, 672681deficient, prime
68 1, 2, 4, 17, 34, 68612658deficient, composite
69 1, 3, 23, 6949627deficient, composite
70 1, 2, 5, 7, 10, 14, 35, 70814474abundant, composite, primitive abundant, weird
71 1, 712721deficient, prime
72 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 7212195123abundant, highly abundant, composite
73 1, 732741deficient, prime
74 1, 2, 37, 74411440deficient, composite
75 1, 3, 5, 15, 25, 75612449deficient, composite
76 1, 2, 4, 19, 38, 76614064deficient, composite
77 1, 7, 11, 7749619deficient, composite
78 1, 2, 3, 6, 13, 26, 39, 78816890abundant, composite
79 1, 792801deficient, prime
80 1, 2, 4, 5, 8, 10, 16, 20, 40, 8010186106abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
81 1, 3, 9, 27, 81512140deficient, composite
82 1, 2, 41, 82412644deficient, composite
83 1, 832841deficient, prime
84 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 8412224140abundant, highly abundant, composite
85 1, 5, 17, 85410823deficient, composite
86 1, 2, 43, 86413246deficient, composite
87 1, 3, 29, 87412033deficient, composite
88 1, 2, 4, 8, 11, 22, 44, 88818092abundant, composite, primitive abundant
89 1, 892901deficient, prime
90 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 9012234144abundant, highly abundant, composite
91 1, 7, 13, 91411221deficient, composite
92 1, 2, 4, 23, 46, 92616876deficient, composite
93 1, 3, 31, 93412835deficient, composite
94 1, 2, 47, 94414450deficient, composite
95 1, 5, 19, 95412025deficient, composite
96 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 9612252156abundant, highly abundant, composite
97 1, 972981deficient, prime
98 1, 2, 7, 14, 49, 98617173deficient, composite
99 1, 3, 9, 11, 33, 99615657deficient, composite
100 1, 2, 4, 5, 10, 20, 25, 50, 1009217117abundant, composite

101 to 200

nDivisorsd(n)σ(n)s(n)Notes
101 1, 10121021deficient, prime
102 1, 2, 3, 6, 17, 34, 51, 1028216114abundant, composite
103 1, 10321041deficient, prime
104 1, 2, 4, 8, 13, 26, 52, 1048210106abundant, composite, primitive abundant
105 1, 3, 5, 7, 15, 21, 35, 105819287deficient, composite
106 1, 2, 53, 106416256deficient, composite
107 1, 10721081deficient, prime
108 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 10812280172abundant, highly abundant, composite
109 1, 10921101deficient, prime
110 1, 2, 5, 10, 11, 22, 55, 1108216106deficient, composite
111 1, 3, 37, 111415241deficient, composite
112 1, 2, 4, 7, 8, 14, 16, 28, 56, 11210248136abundant, composite
113 1, 11321141deficient, prime
114 1, 2, 3, 6, 19, 38, 57, 1148240126abundant, composite
115 1, 5, 23, 115414429deficient, composite
116 1, 2, 4, 29, 58, 116621094deficient, composite
117 1, 3, 9, 13, 39, 117618265deficient, composite
118 1, 2, 59, 118418062deficient, composite
119 1, 7, 17, 119414425deficient, composite
120 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 12016360240abundant, highly abundant, composite, highly composite, superior highly composite
nDivisorsd(n)σ(n)s(n)Notes
121 1, 11, 121313312deficient, composite
122 1, 2, 61, 122418664deficient, composite
123 1, 3, 41, 123416845deficient, composite
124 1, 2, 4, 31, 62, 1246224100deficient, composite
125 1, 5, 25, 125415631deficient, composite
126 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 12612312186abundant, composite
127 1, 12721281deficient, prime
128 1, 2, 4, 8, 16, 32, 64, 1288255127deficient, composite
129 1, 3, 43, 129417647deficient, composite
130 1, 2, 5, 10, 13, 26, 65, 1308252122deficient, composite
131 1, 13121321deficient, prime
132 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 13212336204abundant, composite
133 1, 7, 19, 133416027deficient, composite
134 1, 2, 67, 134420470deficient, composite
135 1, 3, 5, 9, 15, 27, 45, 1358240105deficient, composite
136 1, 2, 4, 8, 17, 34, 68, 1368270134deficient, composite
137 1, 13721381deficient, prime
138 1, 2, 3, 6, 23, 46, 69, 1388288150abundant, composite
139 1, 13921401deficient, prime
140 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 14012336196abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
141 1, 3, 47, 141419251deficient, composite
142 1, 2, 71, 142421674deficient, composite
143 1, 11, 13, 143416825deficient, composite
144 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 14415403259abundant, highly abundant, composite
145 1, 5, 29, 145418035deficient, composite
146 1, 2, 73, 146422276deficient, composite
147 1, 3, 7, 21, 49, 147622881deficient, composite
148 1, 2, 4, 37, 74, 1486266118deficient, composite
149 1, 14921501deficient, prime
150 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 15012372222abundant, composite
151 1, 15121521deficient, prime
152 1, 2, 4, 8, 19, 38, 76, 1528300148deficient, composite
153 1, 3, 9, 17, 51, 153623481deficient, composite
154 1, 2, 7, 11, 14, 22, 77, 1548288134deficient, composite
155 1, 5, 31, 155419237deficient, composite
156 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 15612392236abundant, composite
157 1, 15721581deficient, prime
158 1, 2, 79, 158424082deficient, composite
159 1, 3, 53, 159421657deficient, composite
160 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 16012378218abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
161 1, 7, 23, 161419231deficient, composite
162 1, 2, 3, 6, 9, 18, 27, 54, 81, 16210363201abundant, composite
163 1, 16321641deficient, prime
164 1, 2, 4, 41, 82, 1646294130deficient, composite
165 1, 3, 5, 11, 15, 33, 55, 1658288123deficient, composite
166 1, 2, 83, 166425286deficient, composite
167 1, 16721681deficient, prime
168 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 16816480312abundant, highly abundant, composite
169 1, 13, 169318314deficient, composite
170 1, 2, 5, 10, 17, 34, 85, 1708324154deficient, composite
171 1, 3, 9, 19, 57, 171626089deficient, composite
172 1, 2, 4, 43, 86, 1726308136deficient, composite
173 1, 17321741deficient, prime
174 1, 2, 3, 6, 29, 58, 87, 1748360186abundant, composite
175 1, 5, 7, 25, 35, 175624873deficient, composite
176 1, 2, 4, 8, 11, 16, 22, 44, 88, 17610372196abundant, composite
177 1, 3, 59, 177424063deficient, composite
178 1, 2, 89, 178427092deficient, composite
179 1, 17921801deficient, prime
180 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 18018546366abundant, highly abundant, composite, highly composite
nDivisorsd(n)σ(n)s(n)Notes
181 1, 18121821deficient, prime
182 1, 2, 7, 13, 14, 26, 91, 1828336154deficient, composite
183 1, 3, 61, 183424865deficient, composite
184 1, 2, 4, 8, 23, 46, 92, 1848360176deficient, composite
185 1, 5, 37, 185422843deficient, composite
186 1, 2, 3, 6, 31, 62, 93, 1868384198abundant, composite
187 1, 11, 17, 187421629deficient, composite
188 1, 2, 4, 47, 94, 1886336148deficient, composite
189 1, 3, 7, 9, 21, 27, 63, 1898320131deficient, composite
190 1, 2, 5, 10, 19, 38, 95, 1908360170deficient, composite
191 1, 19121921deficient, prime
192 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 19214508316abundant, composite
193 1, 19321941deficient, prime
194 1, 2, 97, 1944294100deficient, composite
195 1, 3, 5, 13, 15, 39, 65, 1958336141deficient, composite
196 1, 2, 4, 7, 14, 28, 49, 98, 1969399203abundant, composite
197 1, 19721981deficient, prime
198 1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 19812468270abundant, composite
199 1, 19922001deficient, prime
200 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 20012465265abundant, composite

201 to 300

nDivisorsd(n)σ(n)s(n)Notes
201 1, 3, 67, 201427271deficient, composite
202 1, 2, 101, 2024306104deficient, composite
203 1, 7, 29, 203424037deficient, composite
204 1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 20412504300abundant, composite
205 1, 5, 41, 205425247deficient, composite
206 1, 2, 103, 2064312106deficient, composite
207 1, 3, 9, 23, 69, 2076312105deficient, composite
208 1, 2, 4, 8, 13, 16, 26, 52, 104, 20810434226abundant, composite
209 1, 11, 19, 209424031deficient, composite
210 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 21016576366abundant, highly abundant, composite
211 1, 21122121deficient, prime
212 1, 2, 4, 53, 106, 2126378166deficient, composite
213 1, 3, 71, 213428875deficient, composite
214 1, 2, 107, 2144324110deficient, composite
215 1, 5, 43, 215426449deficient, composite
216 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 21616600384abundant, highly abundant, composite
217 1, 7, 31, 217425639deficient, composite
218 1, 2, 109, 2184330112deficient, composite
219 1, 3, 73, 219429677deficient, composite
220 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 22012504284abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
221 1, 13, 17, 221425231deficient, composite
222 1, 2, 3, 6, 37, 74, 111, 2228456234abundant, composite
223 1, 22322241deficient, prime
224 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112, 22412504280abundant, composite
225 1, 3, 5, 9, 15, 25, 45, 75, 2259403178deficient, composite
226 1, 2, 113, 2264342116deficient, composite
227 1, 22722281deficient, prime
228 1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 22812560332abundant, composite
229 1, 22922301deficient, prime
230 1, 2, 5, 10, 23, 46, 115, 2308432202deficient, composite
231 1, 3, 7, 11, 21, 33, 77, 2318384153deficient, composite
232 1, 2, 4, 8, 29, 58, 116, 2328450218deficient, composite
233 1, 23322341deficient, prime
234 1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 23412546312abundant, composite
235 1, 5, 47, 235428853deficient, composite
236 1, 2, 4, 59, 118, 2366420184deficient, composite
237 1, 3, 79, 237432083deficient, composite
238 1, 2, 7, 14, 17, 34, 119, 2388432194deficient, composite
239 1, 23922401deficient, prime
240 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 24020744504abundant, highly abundant, composite, highly composite
nDivisorsd(n)σ(n)s(n)Notes
241 1, 24122421deficient, prime
242 1, 2, 11, 22, 121, 2426399157deficient, composite
243 1, 3, 9, 27, 81, 2436364121deficient, composite
244 1, 2, 4, 61, 122, 2446434190deficient, composite
245 1, 5, 7, 35, 49, 245634297deficient, composite
246 1, 2, 3, 6, 41, 82, 123, 2468504258abundant, composite
247 1, 13, 19, 247428033deficient, composite
248 1, 2, 4, 8, 31, 62, 124, 2488480232deficient, composite
249 1, 3, 83, 249433687deficient, composite
250 1, 2, 5, 10, 25, 50, 125, 2508468218deficient, composite
251 1, 25122521deficient, prime
252 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 25218728476abundant, composite
253 1, 11, 23, 253428835deficient, composite
254 1, 2, 127, 2544384130deficient, composite
255 1, 3, 5, 15, 17, 51, 85, 2558432177deficient, composite
256 1, 2, 4, 8, 16, 32, 64, 128, 2569511255deficient, composite
257 1, 25722581deficient, prime
258 1, 2, 3, 6, 43, 86, 129, 2588528270abundant, composite
259 1, 7, 37, 259430445deficient, composite
260 1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 26012588328abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
261 1, 3, 9, 29, 87, 2616390129deficient, composite
262 1, 2, 131, 2624396134deficient, composite
263 1, 26322641deficient, prime
264 1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 44, 66, 88, 132, 26416720456abundant, composite
265 1, 5, 53, 265432459deficient, composite
266 1, 2, 7, 14, 19, 38, 133, 2668480214deficient, composite
267 1, 3, 89, 267436093deficient, composite
268 1, 2, 4, 67, 134, 2686476208deficient, composite
269 1, 26922701deficient, prime
270 1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 27016720450abundant, composite
271 1, 27122721deficient, prime
272 1, 2, 4, 8, 16, 17, 34, 68, 136, 27210558286abundant, composite, primitive abundant
273 1, 3, 7, 13, 21, 39, 91, 2738448175deficient, composite
274 1, 2, 137, 2744414140deficient, composite
275 1, 5, 11, 25, 55, 275637297deficient, composite
276 1, 2, 3, 4, 6, 12, 23, 46, 69, 92, 138, 27612672396abundant, composite
277 1, 27722781deficient, prime
278 1, 2, 139, 2784420142deficient, composite
279 1, 3, 9, 31, 93, 2796416137deficient, composite
280 1, 2, 4, 5, 7, 8, 10, 14, 20, 28, 35, 40, 56, 70, 140, 28016720440abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
281 1, 28122821deficient, prime
282 1, 2, 3, 6, 47, 94, 141, 2828576294abundant, composite
283 1, 28322841deficient, prime
284 1, 2, 4, 71, 142, 2846504220deficient, composite
285 1, 3, 5, 15, 19, 57, 95, 2858480195deficient, composite
286 1, 2, 11, 13, 22, 26, 143, 2868504218deficient, composite
287 1, 7, 41, 287433649deficient, composite
288 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 28818819531abundant, highly abundant, composite
289 1, 17, 289330718deficient, composite
290 1, 2, 5, 10, 29, 58, 145, 2908540250deficient, composite
291 1, 3, 97, 2914392101deficient, composite
292 1, 2, 4, 73, 146, 2926518226deficient, composite
293 1, 29322941deficient, prime
294 1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 29412684390abundant, composite
295 1, 5, 59, 295436065deficient, composite
296 1, 2, 4, 8, 37, 74, 148, 2968570274deficient, composite
297 1, 3, 9, 11, 27, 33, 99, 2978480183deficient, composite
298 1, 2, 149, 2984450152deficient, composite
299 1, 13, 23, 299433637deficient, composite
300 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 30018868568abundant, highly abundant, composite

301 to 400

nDivisorsd(n)σ(n)s(n)Notes
301 1, 7, 43, 301435251deficient, composite
302 1, 2, 151, 3024456154deficient, composite
303 1, 3, 101, 3034408105deficient, composite
304 1, 2, 4, 8, 16, 19, 38, 76, 152, 30410620316abundant, composite, primitive abundant
305 1, 5, 61, 305437267deficient, composite
306 1, 2, 3, 6, 9, 17, 18, 34, 51, 102, 153, 30612702396abundant, composite
307 1, 30723081deficient, prime
308 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 30812672364abundant, composite
309 1, 3, 103, 3094416107deficient, composite
310 1, 2, 5, 10, 31, 62, 155, 3108576266deficient, composite
311 1, 31123121deficient, prime
312 1, 2, 3, 4, 6, 8, 12, 13, 24, 26, 39, 52, 78, 104, 156, 31216840528abundant, composite
313 1, 31323141deficient, prime
314 1, 2, 157, 3144474160deficient, composite
315 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 31512624309deficient, composite
316 1, 2, 4, 79, 158, 3166560244deficient, composite
317 1, 31723181deficient, prime
318 1, 2, 3, 6, 53, 106, 159, 3188648330abundant, composite
319 1, 11, 29, 319436041deficient, composite
320 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 32014762442abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
321 1, 3, 107, 3214432111deficient, composite
322 1, 2, 7, 14, 23, 46, 161, 3228576254deficient, composite
323 1, 17, 19, 323436037deficient, composite
324 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 32415847523abundant, composite
325 1, 5, 13, 25, 65, 3256434109deficient, composite
326 1, 2, 163, 3264492166deficient, composite
327 1, 3, 109, 3274440113deficient, composite
328 1, 2, 4, 8, 41, 82, 164, 3288630302deficient, composite
329 1, 7, 47, 329438455deficient, composite
330 1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55, 66, 110, 165, 33016864534abundant, composite
331 1, 33123321deficient, prime
332 1, 2, 4, 83, 166, 3326588256deficient, composite
333 1, 3, 9, 37, 111, 3336494161deficient, composite
334 1, 2, 167, 3344504170deficient, composite
335 1, 5, 67, 335440873deficient, composite
336 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 33620992656abundant, highly abundant, composite
337 1, 33723381deficient, prime
338 1, 2, 13, 26, 169, 3386549211deficient, composite
339 1, 3, 113, 3394456117deficient, composite
340 1, 2, 4, 5, 10, 17, 20, 34, 68, 85, 170, 34012756416abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
341 1, 11, 31, 341438443deficient, composite
342 1, 2, 3, 6, 9, 18, 19, 38, 57, 114, 171, 34212780438abundant, composite
343 1, 7, 49, 343440057deficient, composite
344 1, 2, 4, 8, 43, 86, 172, 3448660316deficient, composite
345 1, 3, 5, 15, 23, 69, 115, 3458576231deficient, composite
346 1, 2, 173, 3464522176deficient, composite
347 1, 34723481deficient, prime
348 1, 2, 3, 4, 6, 12, 29, 58, 87, 116, 174, 34812840492abundant, composite
349 1, 34923501deficient, prime
350 1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175, 35012744394abundant, composite
351 1, 3, 9, 13, 27, 39, 117, 3518560209deficient, composite
352 1, 2, 4, 8, 11, 16, 22, 32, 44, 88, 176, 35212756404abundant, composite
353 1, 35323541deficient, prime
354 1, 2, 3, 6, 59, 118, 177, 3548720366abundant, composite
355 1, 5, 71, 355443277deficient, composite
356 1, 2, 4, 89, 178, 3566630274deficient, composite
357 1, 3, 7, 17, 21, 51, 119, 3578576219deficient, composite
358 1, 2, 179, 3584540182deficient, composite
359 1, 35923601deficient, prime
360 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360241170810abundant, highly abundant, composite, highly composite, superior highly composite
nDivisorsd(n)σ(n)s(n)Notes
361 1, 19, 361338120deficient, composite
362 1, 2, 181, 3624546184deficient, composite
363 1, 3, 11, 33, 121, 3636532169deficient, composite
364 1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 36412784420abundant, composite
365 1, 5, 73, 365444479deficient, composite
366 1, 2, 3, 6, 61, 122, 183, 3668744378abundant, composite
367 1, 36723681deficient, prime
368 1, 2, 4, 8, 16, 23, 46, 92, 184, 36810744376abundant, composite, primitive abundant
369 1, 3, 9, 41, 123, 3696546177deficient, composite
370 1, 2, 5, 10, 37, 74, 185, 3708684314deficient, composite
371 1, 7, 53, 371443261deficient, composite
372 1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 37212896524abundant, composite
373 1, 37323741deficient, prime
374 1, 2, 11, 17, 22, 34, 187, 3748648274deficient, composite
375 1, 3, 5, 15, 25, 75, 125, 3758624249deficient, composite
376 1, 2, 4, 8, 47, 94, 188, 3768720344deficient, composite
377 1, 13, 29, 377442043deficient, composite
378 1, 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 126, 189, 37816960582abundant, composite
379 1, 37923801deficient, prime
380 1, 2, 4, 5, 10, 19, 20, 38, 76, 95, 190, 38012840460abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
381 1, 3, 127, 3814512131deficient, composite
382 1, 2, 191, 3824576194deficient, composite
383 1, 38323841deficient, prime
384 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 384161020636abundant, composite
385 1, 5, 7, 11, 35, 55, 77, 3858576191deficient, composite
386 1, 2, 193, 3864582196deficient, composite
387 1, 3, 9, 43, 129, 3876572185deficient, composite
388 1, 2, 4, 97, 194, 3886686298deficient, composite
389 1, 38923901deficient, prime
390 1, 2, 3, 5, 6, 10, 13, 15, 26, 30, 39, 65, 78, 130, 195, 390161008618abundant, composite
391 1, 17, 23, 391443241deficient, composite
392 1, 2, 4, 7, 8, 14, 28, 49, 56, 98, 196, 39212855463abundant, composite
393 1, 3, 131, 3934528135deficient, composite
394 1, 2, 197, 3944594200deficient, composite
395 1, 5, 79, 395448085deficient, composite
396 1, 2, 3, 4, 6, 9, 11, 12, 18, 22, 33, 36, 44, 66, 99, 132, 198, 396181092696abundant, composite
397 1, 39723981deficient, prime
398 1, 2, 199, 3984600202deficient, composite
399 1, 3, 7, 19, 21, 57, 133, 3998640241deficient, composite
400 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 40015961561abundant, composite

401 to 500

nDivisorsd(n)σ(n)s(n)Notes
401 1, 40124021deficient, prime
402 1, 2, 3, 6, 67, 134, 201, 4028816414abundant, composite
403 1, 13, 31, 403444845deficient, composite
404 1, 2, 4, 101, 202, 4046714310deficient, composite
405 1, 3, 5, 9, 15, 27, 45, 81, 135, 40510726321deficient, composite
406 1, 2, 7, 14, 29, 58, 203, 4068720314deficient, composite
407 1, 11, 37, 407445649deficient, composite
408 1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, 408161080672abundant, composite
409 1, 40924101deficient, prime
410 1, 2, 5, 10, 41, 82, 205, 4108756346deficient, composite
411 1, 3, 137, 4114552141deficient, composite
412 1, 2, 4, 103, 206, 4126728316deficient, composite
413 1, 7, 59, 413448067deficient, composite
414 1, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 41412936522abundant, composite
415 1, 5, 83, 415450489deficient, composite
416 1, 2, 4, 8, 13, 16, 26, 32, 52, 104, 208, 41612882466abundant, composite
417 1, 3, 139, 4174560143deficient, composite
418 1, 2, 11, 19, 22, 38, 209, 4188720302deficient, composite
419 1, 41924201deficient, prime
420 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420241344924abundant, highly abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
421 1, 42124221deficient, prime
422 1, 2, 211, 4224636214deficient, composite
423 1, 3, 9, 47, 141, 4236624201deficient, composite
424 1, 2, 4, 8, 53, 106, 212, 4248810386deficient, composite
425 1, 5, 17, 25, 85, 4256558133deficient, composite
426 1, 2, 3, 6, 71, 142, 213, 4268864438abundant, composite
427 1, 7, 61, 427449669deficient, composite
428 1, 2, 4, 107, 214, 4286756328deficient, composite
429 1, 3, 11, 13, 33, 39, 143, 4298672243deficient, composite
430 1, 2, 5, 10, 43, 86, 215, 4308792362deficient, composite
431 1, 43124321deficient, prime
432 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, 216, 432201240808abundant, composite
433 1, 43324341deficient, prime
434 1, 2, 7, 14, 31, 62, 217, 4348768334deficient, composite
435 1, 3, 5, 15, 29, 87, 145, 4358720285deficient, composite
436 1, 2, 4, 109, 218, 4366770334deficient, composite
437 1, 19, 23, 437448043deficient, composite
438 1, 2, 3, 6, 73, 146, 219, 4388888450abundant, composite
439 1, 43924401deficient, prime
440 1, 2, 4, 5, 8, 10, 11, 20, 22, 40, 44, 55, 88, 110, 220, 440161080640abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
441 1, 3, 7, 9, 21, 49, 63, 147, 4419741300deficient, composite
442 1, 2, 13, 17, 26, 34, 221, 4428756314deficient, composite
443 1, 44324441deficient, prime
444 1, 2, 3, 4, 6, 12, 37, 74, 111, 148, 222, 444121064620abundant, composite
445 1, 5, 89, 445454095deficient, composite
446 1, 2, 223, 4464672226deficient, composite
447 1, 3, 149, 4474600153deficient, composite
448 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 224, 448141016568abundant, composite
449 1, 44924501deficient, prime
450 1, 2, 3, 5, 6, 9, 10, 15, 18, 25, 30, 45, 50, 75, 90, 150, 225, 450181209759abundant, composite
451 1, 11, 41, 451450453deficient, composite
452 1, 2, 4, 113, 226, 4526798346deficient, composite
453 1, 3, 151, 4534608155deficient, composite
454 1, 2, 227, 4544684230deficient, composite
455 1, 5, 7, 13, 35, 65, 91, 4558672217deficient, composite
456 1, 2, 3, 4, 6, 8, 12, 19, 24, 38, 57, 76, 114, 152, 228, 456161200744abundant, composite
457 1, 45724581deficient, prime
458 1, 2, 229, 4584690232deficient, composite
459 1, 3, 9, 17, 27, 51, 153, 4598720261deficient, composite
460 1, 2, 4, 5, 10, 20, 23, 46, 92, 115, 230, 460121008548abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
461 1, 46124621deficient, prime
462 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462161152690abundant, composite
463 1, 46324641deficient, prime
464 1, 2, 4, 8, 16, 29, 58, 116, 232, 46410930466abundant, composite, primitive abundant
465 1, 3, 5, 15, 31, 93, 155, 4658768303deficient, composite
466 1, 2, 233, 4664702236deficient, composite
467 1, 46724681deficient, prime
468 1, 2, 3, 4, 6, 9, 12, 13, 18, 26, 36, 39, 52, 78, 117, 156, 234, 468181274806abundant, composite
469 1, 7, 67, 469454475deficient, composite
470 1, 2, 5, 10, 47, 94, 235, 4708864394deficient, composite
471 1, 3, 157, 4714632161deficient, composite
472 1, 2, 4, 8, 59, 118, 236, 4728900428deficient, composite
473 1, 11, 43, 473452855deficient, composite
474 1, 2, 3, 6, 79, 158, 237, 4748960486abundant, composite
475 1, 5, 19, 25, 95, 4756620145deficient, composite
476 1, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476121008532abundant, composite
477 1, 3, 9, 53, 159, 4776702225deficient, composite
478 1, 2, 239, 4784720242deficient, composite
479 1, 47924801deficient, prime
480 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 80, 96, 120, 160, 240, 4802415121032abundant, highly abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
481 1, 13, 37, 481453251deficient, composite
482 1, 2, 241, 4824726244deficient, composite
483 1, 3, 7, 21, 23, 69, 161, 4838768285deficient, composite
484 1, 2, 4, 11, 22, 44, 121, 242, 4849931447deficient, composite
485 1, 5, 97, 4854588103deficient, composite
486 1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486121092606abundant, composite
487 1, 48724881deficient, prime
488 1, 2, 4, 8, 61, 122, 244, 4888930442deficient, composite
489 1, 3, 163, 4894656167deficient, composite
490 1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490121026536abundant, composite
491 1, 49124921deficient, prime
492 1, 2, 3, 4, 6, 12, 41, 82, 123, 164, 246, 492121176684abundant, composite
493 1, 17, 29, 493454047deficient, composite
494 1, 2, 13, 19, 26, 38, 247, 4948840346deficient, composite
495 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 49512936441deficient, composite
496 1, 2, 4, 8, 16, 31, 62, 124, 248, 49610992496perfect, composite
497 1, 7, 71, 497457679deficient, composite
498 1, 2, 3, 6, 83, 166, 249, 49881008510abundant, composite
499 1, 49925001deficient, prime
500 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500121092592abundant, composite

501 to 600

nDivisorsd(n)σ(n)s(n)Notes
501 1, 3, 167, 5014672171deficient, composite
502 1, 2, 251, 5024756254deficient, composite
503 1, 50325041deficient, prime
504 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 5042415601056abundant, highly abundant, composite
505 1, 5, 101, 5054612107deficient, composite
506 1, 2, 11, 22, 23, 46, 253, 5068864358deficient, composite
507 1, 3, 13, 39, 169, 5076732225deficient, composite
508 1, 2, 4, 127, 254, 5086896388deficient, composite
509 1, 50925101deficient, prime
510 1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510161296786abundant, composite
511 1, 7, 73, 511459281deficient, composite
512 1, 2, 4, 8, 16, 32, 64, 128, 256, 512101023511deficient, composite
513 1, 3, 9, 19, 27, 57, 171, 5138800287deficient, composite
514 1, 2, 257, 5144774260deficient, composite
515 1, 5, 103, 5154624109deficient, composite
516 1, 2, 3, 4, 6, 12, 43, 86, 129, 172, 258, 516121232716abundant, composite
517 1, 11, 47, 517457659deficient, composite
518 1, 2, 7, 14, 37, 74, 259, 5188912394deficient, composite
519 1, 3, 173, 5194696177deficient, composite
520 1, 2, 4, 5, 8, 10, 13, 20, 26, 40, 52, 65, 104, 130, 260, 520161260740abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
521 1, 52125221deficient, prime
522 1, 2, 3, 6, 9, 18, 29, 58, 87, 174, 261, 522121170648abundant, composite
523 1, 52325241deficient, prime
524 1, 2, 4, 131, 262, 5246924400deficient, composite
525 1, 3, 5, 7, 15, 21, 25, 35, 75, 105, 175, 52512992467deficient, composite
526 1, 2, 263, 5264792266deficient, composite
527 1, 17, 31, 527457649deficient, composite
528 1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528201488960abundant, composite
529 1, 23, 529355324deficient, composite
530 1, 2, 5, 10, 53, 106, 265, 5308972442deficient, composite
531 1, 3, 9, 59, 177, 5316780249deficient, composite
532 1, 2, 4, 7, 14, 19, 28, 38, 76, 133, 266, 532121120588abundant, composite
533 1, 13, 41, 533458855deficient, composite
534 1, 2, 3, 6, 89, 178, 267, 53481080546abundant, composite
535 1, 5, 107, 5354648113deficient, composite
536 1, 2, 4, 8, 67, 134, 268, 53681020484deficient, composite
537 1, 3, 179, 5374720183deficient, composite
538 1, 2, 269, 5384810272deficient, composite
539 1, 7, 11, 49, 77, 5396684145deficient, composite
540 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 5402416801140abundant, highly abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
541 1, 54125421deficient, prime
542 1, 2, 271, 5424816274deficient, composite
543 1, 3, 181, 5434728185deficient, composite
544 1, 2, 4, 8, 16, 17, 32, 34, 68, 136, 272, 544121134590abundant, composite
545 1, 5, 109, 5454660115deficient, composite
546 1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546161344798abundant, composite
547 1, 54725481deficient, prime
548 1, 2, 4, 137, 274, 5486966418deficient, composite
549 1, 3, 9, 61, 183, 5496806257deficient, composite
550 1, 2, 5, 10, 11, 22, 25, 50, 55, 110, 275, 550121116566abundant, composite, primitive abundant
551 1, 19, 29, 551460049deficient, composite
552 1, 2, 3, 4, 6, 8, 12, 23, 24, 46, 69, 92, 138, 184, 276, 552161440888abundant, composite
553 1, 7, 79, 553464087deficient, composite
554 1, 2, 277, 5544834280deficient, composite
555 1, 3, 5, 15, 37, 111, 185, 5558912357deficient, composite
556 1, 2, 4, 139, 278, 5566980424deficient, composite
557 1, 55725581deficient, prime
558 1, 2, 3, 6, 9, 18, 31, 62, 93, 186, 279, 558121248690abundant, composite
559 1, 13, 43, 559461657deficient, composite
560 1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 35, 40, 56, 70, 80, 112, 140, 280, 560201488928abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
561 1, 3, 11, 17, 33, 51, 187, 5618864303deficient, composite
562 1, 2, 281, 5624846284deficient, composite
563 1, 56325641deficient, prime
564 1, 2, 3, 4, 6, 12, 47, 94, 141, 188, 282, 564121344780abundant, composite
565 1, 5, 113, 5654684119deficient, composite
566 1, 2, 283, 5664852286deficient, composite
567 1, 3, 7, 9, 21, 27, 63, 81, 189, 56710968401deficient, composite
568 1, 2, 4, 8, 71, 142, 284, 56881080512deficient, composite
569 1, 56925701deficient, prime
570 1, 2, 3, 5, 6, 10, 15, 19, 30, 38, 57, 95, 114, 190, 285, 570161440870abundant, composite
571 1, 57125721deficient, prime
572 1, 2, 4, 11, 13, 22, 26, 44, 52, 143, 286, 572121176604abundant, composite, primitive abundant
573 1, 3, 191, 5734768195deficient, composite
574 1, 2, 7, 14, 41, 82, 287, 57481008434deficient, composite
575 1, 5, 23, 25, 115, 5756744169deficient, composite
576 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 5762116511075abundant, composite
577 1, 57725781deficient, prime
578 1, 2, 17, 34, 289, 5786921343deficient, composite
579 1, 3, 193, 5794776197deficient, composite
580 1, 2, 4, 5, 10, 20, 29, 58, 116, 145, 290, 580121260680abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
581 1, 7, 83, 581467291deficient, composite
582 1, 2, 3, 6, 97, 194, 291, 58281176594abundant, composite
583 1, 11, 53, 583464865deficient, composite
584 1, 2, 4, 8, 73, 146, 292, 58481110526deficient, composite
585 1, 3, 5, 9, 13, 15, 39, 45, 65, 117, 195, 585121092507deficient, composite
586 1, 2, 293, 5864882296deficient, composite
587 1, 58725881deficient, prime
588 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 49, 84, 98, 147, 196, 294, 5881815961008abundant, composite
589 1, 19, 31, 589464051deficient, composite
590 1, 2, 5, 10, 59, 118, 295, 59081080490deficient, composite
591 1, 3, 197, 5914792201deficient, composite
592 1, 2, 4, 8, 16, 37, 74, 148, 296, 592101178586deficient, composite
593 1, 59325941deficient, prime
594 1, 2, 3, 6, 9, 11, 18, 22, 27, 33, 54, 66, 99, 198, 297, 594161440846abundant, composite
595 1, 5, 7, 17, 35, 85, 119, 5958864269deficient, composite
596 1, 2, 4, 149, 298, 59661050454deficient, composite
597 1, 3, 199, 5974800203deficient, composite
598 1, 2, 13, 23, 26, 46, 299, 59881008410deficient, composite
599 1, 59926001deficient, prime
600 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 6002418601260abundant, highly abundant, composite

601 to 700

nDivisorsd(n)σ(n)s(n)Notes
601 1, 60126021deficient, prime
602 1, 2, 7, 14, 43, 86, 301, 60281056454deficient, composite
603 1, 3, 9, 67, 201, 6036884281deficient, composite
604 1, 2, 4, 151, 302, 60461064460deficient, composite
605 1, 5, 11, 55, 121, 6056798193deficient, composite
606 1, 2, 3, 6, 101, 202, 303, 60681224618abundant, composite
607 1, 60726081deficient, prime
608 1, 2, 4, 8, 16, 19, 32, 38, 76, 152, 304, 608121260652abundant, composite
609 1, 3, 7, 21, 29, 87, 203, 6098960351deficient, composite
610 1, 2, 5, 10, 61, 122, 305, 61081116506deficient, composite
611 1, 13, 47, 611467261deficient, composite
612 1, 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204, 306, 6121816381026abundant, composite
613 1, 61326141deficient, prime
614 1, 2, 307, 6144924310deficient, composite
615 1, 3, 5, 15, 41, 123, 205, 61581008393deficient, composite
616 1, 2, 4, 7, 8, 11, 14, 22, 28, 44, 56, 77, 88, 154, 308, 616161440824abundant, composite
617 1, 61726181deficient, prime
618 1, 2, 3, 6, 103, 206, 309, 61881248630abundant, composite
619 1, 61926201deficient, prime
620 1, 2, 4, 5, 10, 20, 31, 62, 124, 155, 310, 620121344724abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
621 1, 3, 9, 23, 27, 69, 207, 6218960339deficient, composite
622 1, 2, 311, 6224936314deficient, composite
623 1, 7, 89, 623472097deficient, composite
624 1, 2, 3, 4, 6, 8, 12, 13, 16, 24, 26, 39, 48, 52, 78, 104, 156, 208, 312, 6242017361112abundant, composite
625 1, 5, 25, 125, 6255781156deficient, composite
626 1, 2, 313, 6264942316deficient, composite
627 1, 3, 11, 19, 33, 57, 209, 6278960333deficient, composite
628 1, 2, 4, 157, 314, 62861106478deficient, composite
629 1, 17, 37, 629468455deficient, composite
630 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105, 126, 210, 315, 6302418721242abundant, highly abundant, composite
631 1, 63126321deficient, prime
632 1, 2, 4, 8, 79, 158, 316, 63281200568deficient, composite
633 1, 3, 211, 6334848215deficient, composite
634 1, 2, 317, 6344954320deficient, composite
635 1, 5, 127, 6354768133deficient, composite
636 1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636121512876abundant, composite
637 1, 7, 13, 49, 91, 6376798161deficient, composite
638 1, 2, 11, 22, 29, 58, 319, 63881080442deficient, composite
639 1, 3, 9, 71, 213, 6396936297deficient, composite
640 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640161530890abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
641 1, 64126421deficient, prime
642 1, 2, 3, 6, 107, 214, 321, 64281296654abundant, composite
643 1, 64326441deficient, prime
644 1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644121344700abundant, composite
645 1, 3, 5, 15, 43, 129, 215, 64581056411deficient, composite
646 1, 2, 17, 19, 34, 38, 323, 64681080434deficient, composite
647 1, 64726481deficient, prime
648 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 81, 108, 162, 216, 324, 6482018151167abundant, composite
649 1, 11, 59, 649472071deficient, composite
650 1, 2, 5, 10, 13, 25, 26, 50, 65, 130, 325, 650121302652abundant, composite, primitive abundant
651 1, 3, 7, 21, 31, 93, 217, 65181024373deficient, composite
652 1, 2, 4, 163, 326, 65261148496deficient, composite
653 1, 65326541deficient, prime
654 1, 2, 3, 6, 109, 218, 327, 65481320666abundant, composite
655 1, 5, 131, 6554792137deficient, composite
656 1, 2, 4, 8, 16, 41, 82, 164, 328, 656101302646deficient, composite
657 1, 3, 9, 73, 219, 6576962305deficient, composite
658 1, 2, 7, 14, 47, 94, 329, 65881152494deficient, composite
659 1, 65926601deficient, prime
660 1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 6602420161356abundant, highly abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
661 1, 66126621deficient, prime
662 1, 2, 331, 6624996334deficient, composite
663 1, 3, 13, 17, 39, 51, 221, 66381008345deficient, composite
664 1, 2, 4, 8, 83, 166, 332, 66481260596deficient, composite
665 1, 5, 7, 19, 35, 95, 133, 6658960295deficient, composite
666 1, 2, 3, 6, 9, 18, 37, 74, 111, 222, 333, 666121482816abundant, composite
667 1, 23, 29, 667472053deficient, composite
668 1, 2, 4, 167, 334, 66861176508deficient, composite
669 1, 3, 223, 6694896227deficient, composite
670 1, 2, 5, 10, 67, 134, 335, 67081224554deficient, composite
671 1, 11, 61, 671474473deficient, composite
672 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 6722420161344abundant, composite
673 1, 67326741deficient, prime
674 1, 2, 337, 67441014340deficient, composite
675 1, 3, 5, 9, 15, 25, 27, 45, 75, 135, 225, 675121240565deficient, composite
676 1, 2, 4, 13, 26, 52, 169, 338, 67691281605deficient, composite
677 1, 67726781deficient, prime
678 1, 2, 3, 6, 113, 226, 339, 67881368690abundant, composite
679 1, 7, 97, 6794784105deficient, composite
680 1, 2, 4, 5, 8, 10, 17, 20, 34, 40, 68, 85, 136, 170, 340, 680161620940abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
681 1, 3, 227, 6814912231deficient, composite
682 1, 2, 11, 22, 31, 62, 341, 68281152470deficient, composite
683 1, 68326841deficient, prime
684 1, 2, 3, 4, 6, 9, 12, 18, 19, 36, 38, 57, 76, 114, 171, 228, 342, 6841818201136abundant, composite
685 1, 5, 137, 6854828143deficient, composite
686 1, 2, 7, 14, 49, 98, 343, 68681200514deficient, composite
687 1, 3, 229, 6874920233deficient, composite
688 1, 2, 4, 8, 16, 43, 86, 172, 344, 688101364676deficient, composite
689 1, 13, 53, 689475667deficient, composite
690 1, 2, 3, 5, 6, 10, 15, 23, 30, 46, 69, 115, 138, 230, 345, 6901617281038abundant, composite
691 1, 69126921deficient, prime
692 1, 2, 4, 173, 346, 69261218526deficient, composite
693 1, 3, 7, 9, 11, 21, 33, 63, 77, 99, 231, 693121248555deficient, composite
694 1, 2, 347, 69441044350deficient, composite
695 1, 5, 139, 6954840145deficient, composite
696 1, 2, 3, 4, 6, 8, 12, 24, 29, 58, 87, 116, 174, 232, 348, 6961618001104abundant, composite
697 1, 17, 41, 697475659deficient, composite
698 1, 2, 349, 69841050352deficient, composite
699 1, 3, 233, 6994936237deficient, composite
700 1, 2, 4, 5, 7, 10, 14, 20, 25, 28, 35, 50, 70, 100, 140, 175, 350, 7001817361036abundant, composite

701 to 800

nDivisorsd(n)σ(n)s(n)Notes
701 1, 70127021deficient, prime
702 1, 2, 3, 6, 9, 13, 18, 26, 27, 39, 54, 78, 117, 234, 351, 702161680978abundant, composite
703 1, 19, 37, 703476057deficient, composite
704 1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704141524820abundant, composite
705 1, 3, 5, 15, 47, 141, 235, 70581152447deficient, composite
706 1, 2, 353, 70641062356deficient, composite
707 1, 7, 101, 7074816109deficient, composite
708 1, 2, 3, 4, 6, 12, 59, 118, 177, 236, 354, 708121680972abundant, composite
709 1, 70927101deficient, prime
710 1, 2, 5, 10, 71, 142, 355, 71081296586deficient, composite
711 1, 3, 9, 79, 237, 71161040329deficient, composite
712 1, 2, 4, 8, 89, 178, 356, 71281350638deficient, composite
713 1, 23, 31, 713476855deficient, composite
714 1, 2, 3, 6, 7, 14, 17, 21, 34, 42, 51, 102, 119, 238, 357, 7141617281014abundant, composite
715 1, 5, 11, 13, 55, 65, 143, 71581008293deficient, composite
716 1, 2, 4, 179, 358, 71661260544deficient, composite
717 1, 3, 239, 7174960243deficient, composite
718 1, 2, 359, 71841080362deficient, composite
719 1, 71927201deficient, prime
720 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 7203024181698abundant, highly abundant, composite, highly composite
nDivisorsd(n)σ(n)s(n)Notes
721 1, 7, 103, 7214832111deficient, composite
722 1, 2, 19, 38, 361, 72261143421deficient, composite
723 1, 3, 241, 7234968245deficient, composite
724 1, 2, 4, 181, 362, 72461274550deficient, composite
725 1, 5, 25, 29, 145, 7256930205deficient, composite
726 1, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 726121596870abundant, composite
727 1, 72727281deficient, prime
728 1, 2, 4, 7, 8, 13, 14, 26, 28, 52, 56, 91, 104, 182, 364, 728161680952abundant, composite
729 1, 3, 9, 27, 81, 243, 72971093364deficient, composite
730 1, 2, 5, 10, 73, 146, 365, 73081332602deficient, composite
731 1, 17, 43, 731479261deficient, composite
732 1, 2, 3, 4, 6, 12, 61, 122, 183, 244, 366, 7321217361004abundant, composite
733 1, 73327341deficient, prime
734 1, 2, 367, 73441104370deficient, composite
735 1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735121368633deficient, composite
736 1, 2, 4, 8, 16, 23, 32, 46, 92, 184, 368, 736121512776abundant, composite
737 1, 11, 67, 737481679deficient, composite
738 1, 2, 3, 6, 9, 18, 41, 82, 123, 246, 369, 738121638900abundant, composite
739 1, 73927401deficient, prime
740 1, 2, 4, 5, 10, 20, 37, 74, 148, 185, 370, 740121596856abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
741 1, 3, 13, 19, 39, 57, 247, 74181120379deficient, composite
742 1, 2, 7, 14, 53, 106, 371, 74281296554deficient, composite
743 1, 74327441deficient, prime
744 1, 2, 3, 4, 6, 8, 12, 24, 31, 62, 93, 124, 186, 248, 372, 7441619201176abundant, composite
745 1, 5, 149, 7454900155deficient, composite
746 1, 2, 373, 74641122376deficient, composite
747 1, 3, 9, 83, 249, 74761092345deficient, composite
748 1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748121512764abundant, composite, primitive abundant
749 1, 7, 107, 7494864115deficient, composite
750 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 150, 250, 375, 7501618721122abundant, composite
751 1, 75127521deficient, prime
752 1, 2, 4, 8, 16, 47, 94, 188, 376, 752101488736deficient, composite
753 1, 3, 251, 75341008255deficient, composite
754 1, 2, 13, 26, 29, 58, 377, 75481260506deficient, composite
755 1, 5, 151, 7554912157deficient, composite
756 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 27, 28, 36, 42, 54, 63, 84, 108, 126, 189, 252, 378, 7562422401484abundant, composite
757 1, 75727581deficient, prime
758 1, 2, 379, 75841140382deficient, composite
759 1, 3, 11, 23, 33, 69, 253, 75981152393deficient, composite
760 1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 7601618001040abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
761 1, 76127621deficient, prime
762 1, 2, 3, 6, 127, 254, 381, 76281536774abundant, composite
763 1, 7, 109, 7634880117deficient, composite
764 1, 2, 4, 191, 382, 76461344580deficient, composite
765 1, 3, 5, 9, 15, 17, 45, 51, 85, 153, 255, 765121404639deficient, composite
766 1, 2, 383, 76641152386deficient, composite
767 1, 13, 59, 767484073deficient, composite
768 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 7681820441276abundant, composite
769 1, 76927701deficient, prime
770 1, 2, 5, 7, 10, 11, 14, 22, 35, 55, 70, 77, 110, 154, 385, 770161728958abundant, composite
771 1, 3, 257, 77141032261deficient, composite
772 1, 2, 4, 193, 386, 77261358586deficient, composite
773 1, 77327741deficient, prime
774 1, 2, 3, 6, 9, 18, 43, 86, 129, 258, 387, 774121716942abundant, composite
775 1, 5, 25, 31, 155, 7756992217deficient, composite
776 1, 2, 4, 8, 97, 194, 388, 77681470694deficient, composite
777 1, 3, 7, 21, 37, 111, 259, 77781216439deficient, composite
778 1, 2, 389, 77841170392deficient, composite
779 1, 19, 41, 779484061deficient, composite
780 1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390, 7802423521572abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
781 1, 11, 71, 781486483deficient, composite
782 1, 2, 17, 23, 34, 46, 391, 78281296514deficient, composite
783 1, 3, 9, 27, 29, 87, 261, 78381200417deficient, composite
784 1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, 784151767983abundant, composite
785 1, 5, 157, 7854948163deficient, composite
786 1, 2, 3, 6, 131, 262, 393, 78681584798abundant, composite
787 1, 78727881deficient, prime
788 1, 2, 4, 197, 394, 78861386598deficient, composite
789 1, 3, 263, 78941056267deficient, composite
790 1, 2, 5, 10, 79, 158, 395, 79081440650deficient, composite
791 1, 7, 113, 7914912121deficient, composite
792 1, 2, 3, 4, 6, 8, 9, 11, 12, 18, 22, 24, 33, 36, 44, 66, 72, 88, 99, 132, 198, 264, 396, 7922423401548abundant, composite
793 1, 13, 61, 793486875deficient, composite
794 1, 2, 397, 79441194400deficient, composite
795 1, 3, 5, 15, 53, 159, 265, 79581296501deficient, composite
796 1, 2, 4, 199, 398, 79661400604deficient, composite
797 1, 79727981deficient, prime
798 1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 57, 114, 133, 266, 399, 7981619201122abundant, composite
799 1, 17, 47, 799486465deficient, composite
800 1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 80, 100, 160, 200, 400, 8001819531153abundant, composite

801 to 900

nDivisorsd(n)σ(n)s(n)Notes
801 1, 3, 9, 89, 267, 80161170369deficient, composite
802 1, 2, 401, 80241206404deficient, composite
803 1, 11, 73, 803488885deficient, composite
804 1, 2, 3, 4, 6, 12, 67, 134, 201, 268, 402, 8041219041100abundant, composite
805 1, 5, 7, 23, 35, 115, 161, 80581152347deficient, composite
806 1, 2, 13, 26, 31, 62, 403, 80681344538deficient, composite
807 1, 3, 269, 80741080273deficient, composite
808 1, 2, 4, 8, 101, 202, 404, 80881530722deficient, composite
809 1, 80928101deficient, prime
810 1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405, 8102021781368abundant, composite
811 1, 81128121deficient, prime
812 1, 2, 4, 7, 14, 28, 29, 58, 116, 203, 406, 812121680868abundant, composite
813 1, 3, 271, 81341088275deficient, composite
814 1, 2, 11, 22, 37, 74, 407, 81481368554deficient, composite
815 1, 5, 163, 8154984169deficient, composite
816 1, 2, 3, 4, 6, 8, 12, 16, 17, 24, 34, 48, 51, 68, 102, 136, 204, 272, 408, 8162022321416abundant, composite
817 1, 19, 43, 817488063deficient, composite
818 1, 2, 409, 81841230412deficient, composite
819 1, 3, 7, 9, 13, 21, 39, 63, 91, 117, 273, 819121456637deficient, composite
820 1, 2, 4, 5, 10, 20, 41, 82, 164, 205, 410, 820121764944abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
821 1, 82128221deficient, prime
822 1, 2, 3, 6, 137, 274, 411, 82281656834abundant, composite
823 1, 82328241deficient, prime
824 1, 2, 4, 8, 103, 206, 412, 82481560736deficient, composite
825 1, 3, 5, 11, 15, 25, 33, 55, 75, 165, 275, 825121488663deficient, composite
826 1, 2, 7, 14, 59, 118, 413, 82681440614deficient, composite
827 1, 82728281deficient, prime
828 1, 2, 3, 4, 6, 9, 12, 18, 23, 36, 46, 69, 92, 138, 207, 276, 414, 8281821841356abundant, composite
829 1, 82928301deficient, prime
830 1, 2, 5, 10, 83, 166, 415, 83081512682deficient, composite
831 1, 3, 277, 83141112281deficient, composite
832 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832141778946abundant, composite
833 1, 7, 17, 49, 119, 83361026193deficient, composite
834 1, 2, 3, 6, 139, 278, 417, 83481680846abundant, composite
835 1, 5, 167, 83541008173deficient, composite
836 1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418, 836121680844abundant, composite, primitive abundant, weird
837 1, 3, 9, 27, 31, 93, 279, 83781280443deficient, composite
838 1, 2, 419, 83841260422deficient, composite
839 1, 83928401deficient, prime
840 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 8403228802040abundant, highly abundant, composite, highly composite
nDivisorsd(n)σ(n)s(n)Notes
841 1, 29, 841387130deficient, composite
842 1, 2, 421, 84241266424deficient, composite
843 1, 3, 281, 84341128285deficient, composite
844 1, 2, 4, 211, 422, 84461484640deficient, composite
845 1, 5, 13, 65, 169, 84561098253deficient, composite
846 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 8461218721026abundant, composite
847 1, 7, 11, 77, 121, 84761064217deficient, composite
848 1, 2, 4, 8, 16, 53, 106, 212, 424, 848101674826deficient, composite
849 1, 3, 283, 84941136287deficient, composite
850 1, 2, 5, 10, 17, 25, 34, 50, 85, 170, 425, 850121674824deficient, composite
851 1, 23, 37, 851491261deficient, composite
852 1, 2, 3, 4, 6, 12, 71, 142, 213, 284, 426, 8521220161164abundant, composite
853 1, 85328541deficient, prime
854 1, 2, 7, 14, 61, 122, 427, 85481488634deficient, composite
855 1, 3, 5, 9, 15, 19, 45, 57, 95, 171, 285, 855121560705deficient, composite
856 1, 2, 4, 8, 107, 214, 428, 85681620764deficient, composite
857 1, 85728581deficient, prime
858 1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 8581620161158abundant, composite
859 1, 85928601deficient, prime
860 1, 2, 4, 5, 10, 20, 43, 86, 172, 215, 430, 860121848988abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
861 1, 3, 7, 21, 41, 123, 287, 86181344483deficient, composite
862 1, 2, 431, 86241296434deficient, composite
863 1, 86328641deficient, prime
864 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 96, 108, 144, 216, 288, 432, 8642425201656abundant, composite
865 1, 5, 173, 86541044179deficient, composite
866 1, 2, 433, 86641302436deficient, composite
867 1, 3, 17, 51, 289, 86761228361deficient, composite
868 1, 2, 4, 7, 14, 28, 31, 62, 124, 217, 434, 868121792924abundant, composite
869 1, 11, 79, 869496091deficient, composite
870 1, 2, 3, 5, 6, 10, 15, 29, 30, 58, 87, 145, 174, 290, 435, 8701621601290abundant, composite
871 1, 13, 67, 871495281deficient, composite
872 1, 2, 4, 8, 109, 218, 436, 87281650778deficient, composite
873 1, 3, 9, 97, 291, 87361274401deficient, composite
874 1, 2, 19, 23, 38, 46, 437, 87481440566deficient, composite
875 1, 5, 7, 25, 35, 125, 175, 87581248373deficient, composite
876 1, 2, 3, 4, 6, 12, 73, 146, 219, 292, 438, 8761220721196abundant, composite
877 1, 87728781deficient, prime
878 1, 2, 439, 87841320442deficient, composite
879 1, 3, 293, 87941176297deficient, composite
880 1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 40, 44, 55, 80, 88, 110, 176, 220, 440, 8802022321352abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
881 1, 88128821deficient, prime
882 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 49, 63, 98, 126, 147, 294, 441, 8821822231341abundant, composite
883 1, 88328841deficient, prime
884 1, 2, 4, 13, 17, 26, 34, 52, 68, 221, 442, 884121764880deficient, composite
885 1, 3, 5, 15, 59, 177, 295, 88581440555deficient, composite
886 1, 2, 443, 88641332446deficient, composite
887 1, 88728881deficient, prime
888 1, 2, 3, 4, 6, 8, 12, 24, 37, 74, 111, 148, 222, 296, 444, 8881622801392abundant, composite
889 1, 7, 127, 88941024135deficient, composite
890 1, 2, 5, 10, 89, 178, 445, 89081620730deficient, composite
891 1, 3, 9, 11, 27, 33, 81, 99, 297, 891101452561deficient, composite
892 1, 2, 4, 223, 446, 89261568676deficient, composite
893 1, 19, 47, 893496067deficient, composite
894 1, 2, 3, 6, 149, 298, 447, 89481800906abundant, composite
895 1, 5, 179, 89541080185deficient, composite
896 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 128, 224, 448, 8961620401144abundant, composite
897 1, 3, 13, 23, 39, 69, 299, 89781344447deficient, composite
898 1, 2, 449, 89841350452deficient, composite
899 1, 29, 31, 899496061deficient, composite
900 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 9002728211921abundant, composite

901 to 1000

nDivisorsd(n)σ(n)s(n)Notes
901 1, 17, 53, 901497271deficient, composite
902 1, 2, 11, 22, 41, 82, 451, 90281512610deficient, composite
903 1, 3, 7, 21, 43, 129, 301, 90381408505deficient, composite
904 1, 2, 4, 8, 113, 226, 452, 90481710806deficient, composite
905 1, 5, 181, 90541092187deficient, composite
906 1, 2, 3, 6, 151, 302, 453, 90681824918abundant, composite
907 1, 90729081deficient, prime
908 1, 2, 4, 227, 454, 90861596688deficient, composite
909 1, 3, 9, 101, 303, 90961326417deficient, composite
910 1, 2, 5, 7, 10, 13, 14, 26, 35, 65, 70, 91, 130, 182, 455, 9101620161106abundant, composite
911 1, 91129121deficient, prime
912 1, 2, 3, 4, 6, 8, 12, 16, 19, 24, 38, 48, 57, 76, 114, 152, 228, 304, 456, 9122024801568abundant, composite
913 1, 11, 83, 9134100895deficient, composite
914 1, 2, 457, 91441374460deficient, composite
915 1, 3, 5, 15, 61, 183, 305, 91581488573deficient, composite
916 1, 2, 4, 229, 458, 91661610694deficient, composite
917 1, 7, 131, 91741056139deficient, composite
918 1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, 9181621601242abundant, composite
919 1, 91929201deficient, prime
920 1, 2, 4, 5, 8, 10, 20, 23, 40, 46, 92, 115, 184, 230, 460, 9201621601240abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
921 1, 3, 307, 92141232311deficient, composite
922 1, 2, 461, 92241386464deficient, composite
923 1, 13, 71, 9234100885deficient, composite
924 1, 2, 3, 4, 6, 7, 11, 12, 14, 21, 22, 28, 33, 42, 44, 66, 77, 84, 132, 154, 231, 308, 462, 9242426881764abundant, composite
925 1, 5, 25, 37, 185, 92561178253deficient, composite
926 1, 2, 463, 92641392466deficient, composite
927 1, 3, 9, 103, 309, 92761352425deficient, composite
928 1, 2, 4, 8, 16, 29, 32, 58, 116, 232, 464, 928121890962abundant, composite
929 1, 92929301deficient, prime
930 1, 2, 3, 5, 6, 10, 15, 30, 31, 62, 93, 155, 186, 310, 465, 9301623041374abundant, composite
931 1, 7, 19, 49, 133, 93161140209deficient, composite
932 1, 2, 4, 233, 466, 93261638706deficient, composite
933 1, 3, 311, 93341248315deficient, composite
934 1, 2, 467, 93441404470deficient, composite
935 1, 5, 11, 17, 55, 85, 187, 93581296361deficient, composite
936 1, 2, 3, 4, 6, 8, 9, 12, 13, 18, 24, 26, 36, 39, 52, 72, 78, 104, 117, 156, 234, 312, 468, 9362427301794abundant, composite
937 1, 93729381deficient, prime
938 1, 2, 7, 14, 67, 134, 469, 93881632694deficient, composite
939 1, 3, 313, 93941256317deficient, composite
940 1, 2, 4, 5, 10, 20, 47, 94, 188, 235, 470, 9401220161076abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
941 1, 94129421deficient, prime
942 1, 2, 3, 6, 157, 314, 471, 94281896954abundant, composite
943 1, 23, 41, 9434100865deficient, composite
944 1, 2, 4, 8, 16, 59, 118, 236, 472, 944101860916deficient, composite
945 1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945161920975abundant, composite, primitive abundant
946 1, 2, 11, 22, 43, 86, 473, 94681584638deficient, composite
947 1, 94729481deficient, prime
948 1, 2, 3, 4, 6, 12, 79, 158, 237, 316, 474, 9481222401292abundant, composite
949 1, 13, 73, 9494103687deficient, composite
950 1, 2, 5, 10, 19, 25, 38, 50, 95, 190, 475, 950121860910deficient, composite
951 1, 3, 317, 95141272321deficient, composite
952 1, 2, 4, 7, 8, 14, 17, 28, 34, 56, 68, 119, 136, 238, 476, 9521621601208abundant, composite
953 1, 95329541deficient, prime
954 1, 2, 3, 6, 9, 18, 53, 106, 159, 318, 477, 9541221061152abundant, composite
955 1, 5, 191, 95541152197deficient, composite
956 1, 2, 4, 239, 478, 95661680724deficient, composite
957 1, 3, 11, 29, 33, 87, 319, 95781440483deficient, composite
958 1, 2, 479, 95841440482deficient, composite
959 1, 7, 137, 95941104145deficient, composite
960 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, 480, 9602830482088abundant, highly abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
961 1, 31, 961399332deficient, composite
962 1, 2, 13, 26, 37, 74, 481, 96281596634deficient, composite
963 1, 3, 9, 107, 321, 96361404441deficient, composite
964 1, 2, 4, 241, 482, 96461694730deficient, composite
965 1, 5, 193, 96541164199deficient, composite
966 1, 2, 3, 6, 7, 14, 21, 23, 42, 46, 69, 138, 161, 322, 483, 9661623041338abundant, composite
967 1, 96729681deficient, prime
968 1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 9681219951027abundant, composite
969 1, 3, 17, 19, 51, 57, 323, 96981440471deficient, composite
970 1, 2, 5, 10, 97, 194, 485, 97081764794deficient, composite
971 1, 97129721deficient, prime
972 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 9721825481576abundant, composite
973 1, 7, 139, 97341120147deficient, composite
974 1, 2, 487, 97441464490deficient, composite
975 1, 3, 5, 13, 15, 25, 39, 65, 75, 195, 325, 975121736761deficient, composite
976 1, 2, 4, 8, 16, 61, 122, 244, 488, 976101922946deficient, composite
977 1, 97729781deficient, prime
978 1, 2, 3, 6, 163, 326, 489, 97881968990abundant, composite
979 1, 11, 89, 97941080101deficient, composite
980 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 49, 70, 98, 140, 196, 245, 490, 9801823941414abundant, composite
nDivisorsd(n)σ(n)s(n)Notes
981 1, 3, 9, 109, 327, 98161430449deficient, composite
982 1, 2, 491, 98241476494deficient, composite
983 1, 98329841deficient, prime
984 1, 2, 3, 4, 6, 8, 12, 24, 41, 82, 123, 164, 246, 328, 492, 9841625201536abundant, composite
985 1, 5, 197, 98541188203deficient, composite
986 1, 2, 17, 29, 34, 58, 493, 98681620634deficient, composite
987 1, 3, 7, 21, 47, 141, 329, 98781536549deficient, composite
988 1, 2, 4, 13, 19, 26, 38, 52, 76, 247, 494, 988121960972deficient, composite
989 1, 23, 43, 9894105667deficient, composite
990 1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 9902428081818abundant, composite
991 1, 99129921deficient, prime
992 1, 2, 4, 8, 16, 31, 32, 62, 124, 248, 496, 9921220161024abundant, composite
993 1, 3, 331, 99341328335deficient, composite
994 1, 2, 7, 14, 71, 142, 497, 99481728734deficient, composite
995 1, 5, 199, 99541200205deficient, composite
996 1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498, 9961223521356abundant, composite
997 1, 99729981deficient, prime
998 1, 2, 499, 99841500502deficient, composite
999 1, 3, 9, 27, 37, 111, 333, 99981520521deficient, composite
1000 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 10001623401340abundant, composite

Sortable 1-1000

nDivisorsd(n)σ(n)s(n)Notes
1 1110 deficient, highly abundant, highly composite
2 1, 2231deficient, highly abundant, prime, highly composite, superior highly composite
3 1, 3241deficient, highly abundant, prime
4 1, 2, 4373deficient, highly abundant, composite, highly composite
5 1, 5261deficient, prime
6 1, 2, 3, 64126 perfect, highly abundant, composite, highly composite, superior highly composite
7 1, 7281deficient, prime
8 1, 2, 4, 84157deficient, highly abundant, composite
9 1, 3, 93134deficient, composite
10 1, 2, 5, 104188deficient, highly abundant, composite
11 1, 112121deficient, prime
12 1, 2, 3, 4, 6, 1262816 abundant, highly abundant, composite, highly composite, superior highly composite
13 1, 132141deficient, prime
14 1, 2, 7, 1442410deficient, composite
15 1, 3, 5, 154249deficient, composite
16 1, 2, 4, 8, 1653115deficient, highly abundant, composite
17 1, 172181deficient, prime
18 1, 2, 3, 6, 9, 1863921abundant, highly abundant, composite
19 1, 192201deficient, prime
20 1, 2, 4, 5, 10, 2064222abundant, highly abundant, composite, primitive abundant
21 1, 3, 7, 2143211deficient, composite
22 1, 2, 11, 2243614deficient, composite
23 1, 232241deficient, prime
24 1, 2, 3, 4, 6, 8, 12, 2486036abundant, highly abundant, composite, highly composite
25 1, 5, 253316deficient, composite
26 1, 2, 13, 2644216deficient, composite
27 1, 3, 9, 2744013deficient, composite
28 1, 2, 4, 7, 14, 2865628perfect, composite
29 1, 292301deficient, prime
30 1, 2, 3, 5, 6, 10, 15, 3087242abundant, highly abundant, composite
31 1, 312321deficient, prime
32 1, 2, 4, 8, 16, 3266331deficient, composite
33 1, 3, 11, 3344815deficient, composite
34 1, 2, 17, 3445420deficient, composite
35 1, 5, 7, 3544813deficient, composite
36 1, 2, 3, 4, 6, 9, 12, 18, 3699155abundant, highly abundant, composite, highly composite
37 1, 372381deficient, prime
38 1, 2, 19, 3846022deficient, composite
39 1, 3, 13, 3945617deficient, composite
40 1, 2, 4, 5, 8, 10, 20, 4089050abundant, composite
41 1, 412421deficient, prime
42 1, 2, 3, 6, 7, 14, 21, 4289654abundant, highly abundant, composite
43 1, 432441deficient, prime
44 1, 2, 4, 11, 22, 4468440deficient, composite
45 1, 3, 5, 9, 15, 4567833deficient, composite
46 1, 2, 23, 4647226deficient, composite
47 1, 472481deficient, prime
48 1, 2, 3, 4, 6, 8, 12, 16, 24, 481012476abundant, highly abundant, composite, highly composite
49 1, 7, 493578deficient, composite
50 1, 2, 5, 10, 25, 5069343deficient, composite
51 1, 3, 17, 5147221deficient, composite
52 1, 2, 4, 13, 26, 5269846deficient, composite
53 1, 532541deficient, prime
54 1, 2, 3, 6, 9, 18, 27, 54812066abundant, composite
55 1, 5, 11, 5547217deficient, composite
56 1, 2, 4, 7, 8, 14, 28, 56812064abundant, composite
57 1, 3, 19, 5748023deficient, composite
58 1, 2, 29, 5849032deficient, composite
59 1, 592601deficient, prime
60 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 6012168108abundant, highly abundant, composite, highly composite, superior highly composite
61 1, 612621deficient, prime
62 1, 2, 31, 6249634deficient, composite
63 1, 3, 7, 9, 21, 63610441deficient, composite
64 1, 2, 4, 8, 16, 32, 64712763deficient, composite
65 1, 5, 13, 6548419deficient, composite
66 1, 2, 3, 6, 11, 22, 33, 66814478abundant, composite
67 1, 672681deficient, prime
68 1, 2, 4, 17, 34, 68612658deficient, composite
69 1, 3, 23, 6949627deficient, composite
70 1, 2, 5, 7, 10, 14, 35, 70814474abundant, composite, primitive abundant weird
71 1, 712721deficient, prime
72 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 7212195123abundant, highly abundant, composite
73 1, 732741deficient, prime
74 1, 2, 37, 74411440deficient, composite
75 1, 3, 5, 15, 25, 75612449deficient, composite
76 1, 2, 4, 19, 38, 76614064deficient, composite
77 1, 7, 11, 7749619deficient, composite
78 1, 2, 3, 6, 13, 26, 39, 78816890abundant, composite
79 1, 792801deficient, prime
80 1, 2, 4, 5, 8, 10, 16, 20, 40, 8010186106abundant, composite
81 1, 3, 9, 27, 81512140deficient, composite
82 1, 2, 41, 82412644deficient, composite
83 1, 832841deficient, prime
84 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 8412224140abundant, highly abundant, composite
85 1, 5, 17, 85410823deficient, composite
86 1, 2, 43, 86413246deficient, composite
87 1, 3, 29, 87412033deficient, composite
88 1, 2, 4, 8, 11, 22, 44, 88818092abundant, composite, primitive abundant
89 1, 892901deficient, prime
90 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 9012234144abundant, highly abundant, composite
91 1, 7, 13, 91411221deficient, composite
92 1, 2, 4, 23, 46, 92616876deficient, composite
93 1, 3, 31, 93412835deficient, composite
94 1, 2, 47, 94414450deficient, composite
95 1, 5, 19, 95412025deficient, composite
96 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 9612252156abundant, highly abundant, composite
97 1, 972981deficient, prime
98 1, 2, 7, 14, 49, 98617173deficient, composite
99 1, 3, 9, 11, 33, 99615657deficient, composite
100 1, 2, 4, 5, 10, 20, 25, 50, 1009217117abundant, composite
101 1, 10121021deficient, prime
102 1, 2, 3, 6, 17, 34, 51, 1028216114abundant, composite
103 1, 10321041deficient, prime
104 1, 2, 4, 8, 13, 26, 52, 1048210106abundant, composite, primitive abundant
105 1, 3, 5, 7, 15, 21, 35, 105819287deficient, composite
106 1, 2, 53, 106416256deficient, composite
107 1, 10721081deficient, prime
108 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 10812280172abundant, highly abundant, composite
109 1, 10921101deficient, prime
110 1, 2, 5, 10, 11, 22, 55, 1108216106deficient, composite
111 1, 3, 37, 111415241deficient, composite
112 1, 2, 4, 7, 8, 14, 16, 28, 56, 11210248136abundant, composite
113 1, 11321141deficient, prime
114 1, 2, 3, 6, 19, 38, 57, 1148240126abundant, composite
115 1, 5, 23, 115414429deficient, composite
116 1, 2, 4, 29, 58, 116621094deficient, composite
117 1, 3, 9, 13, 39, 117618265deficient, composite
118 1, 2, 59, 118418062deficient, composite
119 1, 7, 17, 119414425deficient, composite
120 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 12016360240abundant, highly abundant, composite, highly composite, superior highly composite
121 1, 11, 121313312deficient, composite
122 1, 2, 61, 122418664deficient, composite
123 1, 3, 41, 123416845deficient, composite
124 1, 2, 4, 31, 62, 1246224100deficient, composite
125 1, 5, 25, 125415631deficient, composite
126 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 12612312186abundant, composite
127 1, 12721281deficient, prime
128 1, 2, 4, 8, 16, 32, 64, 1288255127deficient, composite
129 1, 3, 43, 129417647deficient, composite
130 1, 2, 5, 10, 13, 26, 65, 1308252122deficient, composite
131 1, 13121321deficient, prime
132 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 13212336204abundant, composite
133 1, 7, 19, 133416027deficient, composite
134 1, 2, 67, 134420470deficient, composite
135 1, 3, 5, 9, 15, 27, 45, 1358240105deficient, composite
136 1, 2, 4, 8, 17, 34, 68, 1368270134deficient, composite
137 1, 13721381deficient, prime
138 1, 2, 3, 6, 23, 46, 69, 1388288150abundant, composite
139 1, 13921401deficient, prime
140 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 14012336196abundant, composite
141 1, 3, 47, 141419251deficient, composite
142 1, 2, 71, 142421674deficient, composite
143 1, 11, 13, 143416825deficient, composite
144 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 14415403259abundant, highly abundant, composite
145 1, 5, 29, 145418035deficient, composite
146 1, 2, 73, 146422276deficient, composite
147 1, 3, 7, 21, 49, 147622881deficient, composite
148 1, 2, 4, 37, 74, 1486266118deficient, composite
149 1, 14921501deficient, prime
150 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 15012372222abundant, composite
151 1, 15121521deficient, prime
152 1, 2, 4, 8, 19, 38, 76, 1528300148deficient, composite
153 1, 3, 9, 17, 51, 153623481deficient, composite
154 1, 2, 7, 11, 14, 22, 77, 1548288134deficient, composite
155 1, 5, 31, 155419237deficient, composite
156 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 15612392236abundant, composite
157 1, 15721581deficient, prime
158 1, 2, 79, 158424082deficient, composite
159 1, 3, 53, 159421657deficient, composite
160 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 16012378218abundant, composite
161 1, 7, 23, 161419231deficient, composite
162 1, 2, 3, 6, 9, 18, 27, 54, 81, 16210363201abundant, composite
163 1, 16321641deficient, prime
164 1, 2, 4, 41, 82, 1646294130deficient, composite
165 1, 3, 5, 11, 15, 33, 55, 1658288123deficient, composite
166 1, 2, 83, 166425286deficient, composite
167 1, 16721681deficient, prime
168 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 16816480312abundant, highly abundant, composite
169 1, 13, 169318314deficient, composite
170 1, 2, 5, 10, 17, 34, 85, 1708324154deficient, composite
171 1, 3, 9, 19, 57, 171626089deficient, composite
172 1, 2, 4, 43, 86, 1726308136deficient, composite
173 1, 17321741deficient, prime
174 1, 2, 3, 6, 29, 58, 87, 1748360186abundant, composite
175 1, 5, 7, 25, 35, 175624873deficient, composite
176 1, 2, 4, 8, 11, 16, 22, 44, 88, 17610372196abundant, composite
177 1, 3, 59, 177424063deficient, composite
178 1, 2, 89, 178427092deficient, composite
179 1, 17921801deficient, prime
180 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 18018546366abundant, highly abundant, composite, highly composite
181 1, 18121821deficient, prime
182 1, 2, 7, 13, 14, 26, 91, 1828336154deficient, composite
183 1, 3, 61, 183424865deficient, composite
184 1, 2, 4, 8, 23, 46, 92, 1848360176deficient, composite
185 1, 5, 37, 185422843deficient, composite
186 1, 2, 3, 6, 31, 62, 93, 1868384198abundant, composite
187 1, 11, 17, 187421629deficient, composite
188 1, 2, 4, 47, 94, 1886336148deficient, composite
189 1, 3, 7, 9, 21, 27, 63, 1898320131deficient, composite
190 1, 2, 5, 10, 19, 38, 95, 1908360170deficient, composite
191 1, 19121921deficient, prime
192 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 19214508316abundant, composite
193 1, 19321941deficient, prime
194 1, 2, 97, 1944294100deficient, composite
195 1, 3, 5, 13, 15, 39, 65, 1958336141deficient, composite
196 1, 2, 4, 7, 14, 28, 49, 98, 1969399203abundant, composite
197 1, 19721981deficient, prime
198 1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 19812468270abundant, composite
199 1, 19922001deficient, prime
200 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 20012465265abundant, composite
201 1, 3, 67, 201427271deficient, composite
202 1, 2, 101, 2024306104deficient, composite
203 1, 7, 29, 203424037deficient, composite
204 1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 20412504300abundant, composite
205 1, 5, 41, 205425247deficient, composite
206 1, 2, 103, 2064312106deficient, composite
207 1, 3, 9, 23, 69, 2076312105deficient, composite
208 1, 2, 4, 8, 13, 16, 26, 52, 104, 20810434226abundant, composite
209 1, 11, 19, 209424031deficient, composite
210 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 21016576366abundant, highly abundant, composite
211 1, 21122121deficient, prime
212 1, 2, 4, 53, 106, 2126378166deficient, composite
213 1, 3, 71, 213428875deficient, composite
214 1, 2, 107, 2144324110deficient, composite
215 1, 5, 43, 215426449deficient, composite
216 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 21616600384abundant, highly abundant, composite
217 1, 7, 31, 217425639deficient, composite
218 1, 2, 109, 2184330112deficient, composite
219 1, 3, 73, 219429677deficient, composite
220 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 22012504284abundant, composite
221 1, 13, 17, 221425231deficient, composite
222 1, 2, 3, 6, 37, 74, 111, 2228456234abundant, composite
223 1, 22322241deficient, prime
224 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112, 22412504280abundant, composite
225 1, 3, 5, 9, 15, 25, 45, 75, 2259403178deficient, composite
226 1, 2, 113, 2264342116deficient, composite
227 1, 22722281deficient, prime
228 1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 22812560332abundant, composite
229 1, 22922301deficient, prime
230 1, 2, 5, 10, 23, 46, 115, 2308432202deficient, composite
231 1, 3, 7, 11, 21, 33, 77, 2318384153deficient, composite
232 1, 2, 4, 8, 29, 58, 116, 2328450218deficient, composite
233 1, 23322341deficient, prime
234 1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 23412546312abundant, composite
235 1, 5, 47, 235428853deficient, composite
236 1, 2, 4, 59, 118, 2366420184deficient, composite
237 1, 3, 79, 237432083deficient, composite
238 1, 2, 7, 14, 17, 34, 119, 2388432194deficient, composite
239 1, 23922401deficient, prime
240 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 24020744504abundant, highly abundant, composite, highly composite
241 1, 24122421deficient, prime
242 1, 2, 11, 22, 121, 2426399157deficient, composite
243 1, 3, 9, 27, 81, 2436364121deficient, composite
244 1, 2, 4, 61, 122, 2446434190deficient, composite
245 1, 5, 7, 35, 49, 245634297deficient, composite
246 1, 2, 3, 6, 41, 82, 123, 2468504258abundant, composite
247 1, 13, 19, 247428033deficient, composite
248 1, 2, 4, 8, 31, 62, 124, 2488480232deficient, composite
249 1, 3, 83, 249433687deficient, composite
250 1, 2, 5, 10, 25, 50, 125, 2508468218deficient, composite
251 1, 25122521deficient, prime
252 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 25218728476abundant, composite
253 1, 11, 23, 253428835deficient, composite
254 1, 2, 127, 2544384130deficient, composite
255 1, 3, 5, 15, 17, 51, 85, 2558432177deficient, composite
256 1, 2, 4, 8, 16, 32, 64, 128, 2569511255deficient, composite
257 1, 25722581deficient, prime
258 1, 2, 3, 6, 43, 86, 129, 2588528270abundant, composite
259 1, 7, 37, 259430445deficient, composite
260 1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 26012588328abundant, composite
261 1, 3, 9, 29, 87, 2616390129deficient, composite
262 1, 2, 131, 2624396134deficient, composite
263 1, 26322641deficient, prime
264 1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 44, 66, 88, 132, 26416720456abundant, composite
265 1, 5, 53, 265432459deficient, composite
266 1, 2, 7, 14, 19, 38, 133, 2668480214deficient, composite
267 1, 3, 89, 267436093deficient, composite
268 1, 2, 4, 67, 134, 2686476208deficient, composite
269 1, 26922701deficient, prime
270 1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 27016720450abundant, composite
271 1, 27122721deficient, prime
272 1, 2, 4, 8, 16, 17, 34, 68, 136, 27210558286abundant, composite, primitive abundant
273 1, 3, 7, 13, 21, 39, 91, 2738448175deficient, composite
274 1, 2, 137, 2744414140deficient, composite
275 1, 5, 11, 25, 55, 275637297deficient, composite
276 1, 2, 3, 4, 6, 12, 23, 46, 69, 92, 138, 27612672396abundant, composite
277 1, 27722781deficient, prime
278 1, 2, 139, 2784420142deficient, composite
279 1, 3, 9, 31, 93, 2796416137deficient, composite
280 1, 2, 4, 5, 7, 8, 10, 14, 20, 28, 35, 40, 56, 70, 140, 28016720440abundant, composite
281 1, 28122821deficient, prime
282 1, 2, 3, 6, 47, 94, 141, 2828576294abundant, composite
283 1, 28322841deficient, prime
284 1, 2, 4, 71, 142, 2846504220deficient, composite
285 1, 3, 5, 15, 19, 57, 95, 2858480195deficient, composite
286 1, 2, 11, 13, 22, 26, 143, 2868504218deficient, composite
287 1, 7, 41, 287433649deficient, composite
288 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 28818819531abundant, highly abundant, composite
289 1, 17, 289330718deficient, composite
290 1, 2, 5, 10, 29, 58, 145, 2908540250deficient, composite
291 1, 3, 97, 2914392101deficient, composite
292 1, 2, 4, 73, 146, 2926518226deficient, composite
293 1, 29322941deficient, prime
294 1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 29412684390abundant, composite
295 1, 5, 59, 295436065deficient, composite
296 1, 2, 4, 8, 37, 74, 148, 2968570274deficient, composite
297 1, 3, 9, 11, 27, 33, 99, 2978480183deficient, composite
298 1, 2, 149, 2984450152deficient, composite
299 1, 13, 23, 299433637deficient, composite
300 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 30018868568abundant, highly abundant, composite
301 1, 7, 43, 301435251deficient, composite
302 1, 2, 151, 3024456154deficient, composite
303 1, 3, 101, 3034408105deficient, composite
304 1, 2, 4, 8, 16, 19, 38, 76, 152, 30410620316abundant, composite, primitive abundant
305 1, 5, 61, 305437267deficient, composite
306 1, 2, 3, 6, 9, 17, 18, 34, 51, 102, 153, 30612702396abundant, composite
307 1, 30723081deficient, prime
308 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 30812672364abundant, composite
309 1, 3, 103, 3094416107deficient, composite
310 1, 2, 5, 10, 31, 62, 155, 3108576266deficient, composite
311 1, 31123121deficient, prime
312 1, 2, 3, 4, 6, 8, 12, 13, 24, 26, 39, 52, 78, 104, 156, 31216840528abundant, composite
313 1, 31323141deficient, prime
314 1, 2, 157, 3144474160deficient, composite
315 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 31512624309deficient, composite
316 1, 2, 4, 79, 158, 3166560244deficient, composite
317 1, 31723181deficient, prime
318 1, 2, 3, 6, 53, 106, 159, 3188648330abundant, composite
319 1, 11, 29, 319436041deficient, composite
320 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 32014762442abundant, composite
321 1, 3, 107, 3214432111deficient, composite
322 1, 2, 7, 14, 23, 46, 161, 3228576254deficient, composite
323 1, 17, 19, 323436037deficient, composite
324 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 32415847523abundant, composite
325 1, 5, 13, 25, 65, 3256434109deficient, composite
326 1, 2, 163, 3264492166deficient, composite
327 1, 3, 109, 3274440113deficient, composite
328 1, 2, 4, 8, 41, 82, 164, 3288630302deficient, composite
329 1, 7, 47, 329438455deficient, composite
330 1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55, 66, 110, 165, 33016864534abundant, composite
331 1, 33123321deficient, prime
332 1, 2, 4, 83, 166, 3326588256deficient, composite
333 1, 3, 9, 37, 111, 3336494161deficient, composite
334 1, 2, 167, 3344504170deficient, composite
335 1, 5, 67, 335440873deficient, composite
336 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 33620992656abundant, highly abundant, composite
337 1, 33723381deficient, prime
338 1, 2, 13, 26, 169, 3386549211deficient, composite
339 1, 3, 113, 3394456117deficient, composite
340 1, 2, 4, 5, 10, 17, 20, 34, 68, 85, 170, 34012756416abundant, composite
341 1, 11, 31, 341438443deficient, composite
342 1, 2, 3, 6, 9, 18, 19, 38, 57, 114, 171, 34212780438abundant, composite
343 1, 7, 49, 343440057deficient, composite
344 1, 2, 4, 8, 43, 86, 172, 3448660316deficient, composite
345 1, 3, 5, 15, 23, 69, 115, 3458576231deficient, composite
346 1, 2, 173, 3464522176deficient, composite
347 1, 34723481deficient, prime
348 1, 2, 3, 4, 6, 12, 29, 58, 87, 116, 174, 34812840492abundant, composite
349 1, 34923501deficient, prime
350 1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175, 35012744394abundant, composite
351 1, 3, 9, 13, 27, 39, 117, 3518560209deficient, composite
352 1, 2, 4, 8, 11, 16, 22, 32, 44, 88, 176, 35212756404abundant, composite
353 1, 35323541deficient, prime
354 1, 2, 3, 6, 59, 118, 177, 3548720366abundant, composite
355 1, 5, 71, 355443277deficient, composite
356 1, 2, 4, 89, 178, 3566630274deficient, composite
357 1, 3, 7, 17, 21, 51, 119, 3578576219deficient, composite
358 1, 2, 179, 3584540182deficient, composite
359 1, 35923601deficient, prime
360 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360241170810abundant, highly abundant, composite, highly composite, superior highly composite
361 1, 19, 361338120deficient, composite
362 1, 2, 181, 3624546184deficient, composite
363 1, 3, 11, 33, 121, 3636532169deficient, composite
364 1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 36412784420abundant, composite
365 1, 5, 73, 365444479deficient, composite
366 1, 2, 3, 6, 61, 122, 183, 3668744378abundant, composite
367 1, 36723681deficient, prime
368 1, 2, 4, 8, 16, 23, 46, 92, 184, 36810744376abundant, composite, primitive abundant
369 1, 3, 9, 41, 123, 3696546177deficient, composite
370 1, 2, 5, 10, 37, 74, 185, 3708684314deficient, composite
371 1, 7, 53, 371443261deficient, composite
372 1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 37212896524abundant, composite
373 1, 37323741deficient, prime
374 1, 2, 11, 17, 22, 34, 187, 3748648274deficient, composite
375 1, 3, 5, 15, 25, 75, 125, 3758624249deficient, composite
376 1, 2, 4, 8, 47, 94, 188, 3768720344deficient, composite
377 1, 13, 29, 377442043deficient, composite
378 1, 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 126, 189, 37816960582abundant, composite
379 1, 37923801deficient, prime
380 1, 2, 4, 5, 10, 19, 20, 38, 76, 95, 190, 38012840460abundant, composite
381 1, 3, 127, 3814512131deficient, composite
382 1, 2, 191, 3824576194deficient, composite
383 1, 38323841deficient, prime
384 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 384161020636abundant, composite
385 1, 5, 7, 11, 35, 55, 77, 3858576191deficient, composite
386 1, 2, 193, 3864582196deficient, composite
387 1, 3, 9, 43, 129, 3876572185deficient, composite
388 1, 2, 4, 97, 194, 3886686298deficient, composite
389 1, 38923901deficient, prime
390 1, 2, 3, 5, 6, 10, 13, 15, 26, 30, 39, 65, 78, 130, 195, 390161008618abundant, composite
391 1, 17, 23, 391443241deficient, composite
392 1, 2, 4, 7, 8, 14, 28, 49, 56, 98, 196, 39212855463abundant, composite
393 1, 3, 131, 3934528135deficient, composite
394 1, 2, 197, 3944594200deficient, composite
395 1, 5, 79, 395448085deficient, composite
396 1, 2, 3, 4, 6, 9, 11, 12, 18, 22, 33, 36, 44, 66, 99, 132, 198, 396181092696abundant, composite
397 1, 39723981deficient, prime
398 1, 2, 199, 3984600202deficient, composite
399 1, 3, 7, 19, 21, 57, 133, 3998640241deficient, composite
400 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 40015961561abundant, composite
401 1, 40124021deficient, prime
402 1, 2, 3, 6, 67, 134, 201, 4028816414abundant, composite
403 1, 13, 31, 403444845deficient, composite
404 1, 2, 4, 101, 202, 4046714310deficient, composite
405 1, 3, 5, 9, 15, 27, 45, 81, 135, 40510726321deficient, composite
406 1, 2, 7, 14, 29, 58, 203, 4068720314deficient, composite
407 1, 11, 37, 407445649deficient, composite
408 1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, 408161080672abundant, composite
409 1, 40924101deficient, prime
410 1, 2, 5, 10, 41, 82, 205, 4108756346deficient, composite
411 1, 3, 137, 4114552141deficient, composite
412 1, 2, 4, 103, 206, 4126728316deficient, composite
413 1, 7, 59, 413448067deficient, composite
414 1, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 41412936522abundant, composite
415 1, 5, 83, 415450489deficient, composite
416 1, 2, 4, 8, 13, 16, 26, 32, 52, 104, 208, 41612882466abundant, composite
417 1, 3, 139, 4174560143deficient, composite
418 1, 2, 11, 19, 22, 38, 209, 4188720302deficient, composite
419 1, 41924201deficient, prime
420 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420241344924abundant, highly abundant, composite
421 1, 42124221deficient, prime
422 1, 2, 211, 4224636214deficient, composite
423 1, 3, 9, 47, 141, 4236624201deficient, composite
424 1, 2, 4, 8, 53, 106, 212, 4248810386deficient, composite
425 1, 5, 17, 25, 85, 4256558133deficient, composite
426 1, 2, 3, 6, 71, 142, 213, 4268864438abundant, composite
427 1, 7, 61, 427449669deficient, composite
428 1, 2, 4, 107, 214, 4286756328deficient, composite
429 1, 3, 11, 13, 33, 39, 143, 4298672243deficient, composite
430 1, 2, 5, 10, 43, 86, 215, 4308792362deficient, composite
431 1, 43124321deficient, prime
432 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, 216, 432201240808abundant, composite
433 1, 43324341deficient, prime
434 1, 2, 7, 14, 31, 62, 217, 4348768334deficient, composite
435 1, 3, 5, 15, 29, 87, 145, 4358720285deficient, composite
436 1, 2, 4, 109, 218, 4366770334deficient, composite
437 1, 19, 23, 437448043deficient, composite
438 1, 2, 3, 6, 73, 146, 219, 4388888450abundant, composite
439 1, 43924401deficient, prime
440 1, 2, 4, 5, 8, 10, 11, 20, 22, 40, 44, 55, 88, 110, 220, 440161080640abundant, composite
441 1, 3, 7, 9, 21, 49, 63, 147, 4419741300deficient, composite
442 1, 2, 13, 17, 26, 34, 221, 4428756314deficient, composite
443 1, 44324441deficient, prime
444 1, 2, 3, 4, 6, 12, 37, 74, 111, 148, 222, 444121064620abundant, composite
445 1, 5, 89, 445454095deficient, composite
446 1, 2, 223, 4464672226deficient, composite
447 1, 3, 149, 4474600153deficient, composite
448 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 224, 448141016568abundant, composite
449 1, 44924501deficient, prime
450 1, 2, 3, 5, 6, 9, 10, 15, 18, 25, 30, 45, 50, 75, 90, 150, 225, 450181209759abundant, composite
451 1, 11, 41, 451450453deficient, composite
452 1, 2, 4, 113, 226, 4526798346deficient, composite
453 1, 3, 151, 4534608155deficient, composite
454 1, 2, 227, 4544684230deficient, composite
455 1, 5, 7, 13, 35, 65, 91, 4558672217deficient, composite
456 1, 2, 3, 4, 6, 8, 12, 19, 24, 38, 57, 76, 114, 152, 228, 456161200744abundant, composite
457 1, 45724581deficient, prime
458 1, 2, 229, 4584690232deficient, composite
459 1, 3, 9, 17, 27, 51, 153, 4598720261deficient, composite
460 1, 2, 4, 5, 10, 20, 23, 46, 92, 115, 230, 460121008548abundant, composite
461 1, 46124621deficient, prime
462 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462161152690abundant, composite
463 1, 46324641deficient, prime
464 1, 2, 4, 8, 16, 29, 58, 116, 232, 46410930466abundant, composite, primitive abundant
465 1, 3, 5, 15, 31, 93, 155, 4658768303deficient, composite
466 1, 2, 233, 4664702236deficient, composite
467 1, 46724681deficient, prime
468 1, 2, 3, 4, 6, 9, 12, 13, 18, 26, 36, 39, 52, 78, 117, 156, 234, 468181274806abundant, composite
469 1, 7, 67, 469454475deficient, composite
470 1, 2, 5, 10, 47, 94, 235, 4708864394deficient, composite
471 1, 3, 157, 4714632161deficient, composite
472 1, 2, 4, 8, 59, 118, 236, 4728900428deficient, composite
473 1, 11, 43, 473452855deficient, composite
474 1, 2, 3, 6, 79, 158, 237, 4748960486abundant, composite
475 1, 5, 19, 25, 95, 4756620145deficient, composite
476 1, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476121008532abundant, composite
477 1, 3, 9, 53, 159, 4776702225deficient, composite
478 1, 2, 239, 4784720242deficient, composite
479 1, 47924801deficient, prime
480 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 80, 96, 120, 160, 240, 4802415121032abundant, highly abundant, composite
481 1, 13, 37, 481453251deficient, composite
482 1, 2, 241, 4824726244deficient, composite
483 1, 3, 7, 21, 23, 69, 161, 4838768285deficient, composite
484 1, 2, 4, 11, 22, 44, 121, 242, 4849931447deficient, composite
485 1, 5, 97, 4854588103deficient, composite
486 1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486121092606abundant, composite
487 1, 48724881deficient, prime
488 1, 2, 4, 8, 61, 122, 244, 4888930442deficient, composite
489 1, 3, 163, 4894656167deficient, composite
490 1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490121026536abundant, composite
491 1, 49124921deficient, prime
492 1, 2, 3, 4, 6, 12, 41, 82, 123, 164, 246, 492121176684abundant, composite
493 1, 17, 29, 493454047deficient, composite
494 1, 2, 13, 19, 26, 38, 247, 4948840346deficient, composite
495 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 49512936441deficient, composite
496 1, 2, 4, 8, 16, 31, 62, 124, 248, 49610992496perfect, composite
497 1, 7, 71, 497457679deficient, composite
498 1, 2, 3, 6, 83, 166, 249, 49881008510abundant, composite
499 1, 49925001deficient, prime
500 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500121092592abundant, composite
501 1, 3, 167, 5014672171deficient, composite
502 1, 2, 251, 5024756254deficient, composite
503 1, 50325041deficient, prime
504 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 5042415601056abundant, highly abundant, composite
505 1, 5, 101, 5054612107deficient, composite
506 1, 2, 11, 22, 23, 46, 253, 5068864358deficient, composite
507 1, 3, 13, 39, 169, 5076732225deficient, composite
508 1, 2, 4, 127, 254, 5086896388deficient, composite
509 1, 50925101deficient, prime
510 1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510161296786abundant, composite
511 1, 7, 73, 511459281deficient, composite
512 1, 2, 4, 8, 16, 32, 64, 128, 256, 512101023511deficient, composite
513 1, 3, 9, 19, 27, 57, 171, 5138800287deficient, composite
514 1, 2, 257, 5144774260deficient, composite
515 1, 5, 103, 5154624109deficient, composite
516 1, 2, 3, 4, 6, 12, 43, 86, 129, 172, 258, 516121232716abundant, composite
517 1, 11, 47, 517457659deficient, composite
518 1, 2, 7, 14, 37, 74, 259, 5188912394deficient, composite
519 1, 3, 173, 5194696177deficient, composite
520 1, 2, 4, 5, 8, 10, 13, 20, 26, 40, 52, 65, 104, 130, 260, 520161260740abundant, composite
521 1, 52125221deficient, prime
522 1, 2, 3, 6, 9, 18, 29, 58, 87, 174, 261, 522121170648abundant, composite
523 1, 52325241deficient, prime
524 1, 2, 4, 131, 262, 5246924400deficient, composite
525 1, 3, 5, 7, 15, 21, 25, 35, 75, 105, 175, 52512992467deficient, composite
526 1, 2, 263, 5264792266deficient, composite
527 1, 17, 31, 527457649deficient, composite
528 1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528201488960abundant, composite
529 1, 23, 529355324deficient, composite
530 1, 2, 5, 10, 53, 106, 265, 5308972442deficient, composite
531 1, 3, 9, 59, 177, 5316780249deficient, composite
532 1, 2, 4, 7, 14, 19, 28, 38, 76, 133, 266, 532121120588abundant, composite
533 1, 13, 41, 533458855deficient, composite
534 1, 2, 3, 6, 89, 178, 267, 53481080546abundant, composite
535 1, 5, 107, 5354648113deficient, composite
536 1, 2, 4, 8, 67, 134, 268, 53681020484deficient, composite
537 1, 3, 179, 5374720183deficient, composite
538 1, 2, 269, 5384810272deficient, composite
539 1, 7, 11, 49, 77, 5396684145deficient, composite
540 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 5402416801140abundant, highly abundant, composite
541 1, 54125421deficient, prime
542 1, 2, 271, 5424816274deficient, composite
543 1, 3, 181, 5434728185deficient, composite
544 1, 2, 4, 8, 16, 17, 32, 34, 68, 136, 272, 544121134590abundant, composite
545 1, 5, 109, 5454660115deficient, composite
546 1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546161344798abundant, composite
547 1, 54725481deficient, prime
548 1, 2, 4, 137, 274, 5486966418deficient, composite
549 1, 3, 9, 61, 183, 5496806257deficient, composite
550 1, 2, 5, 10, 11, 22, 25, 50, 55, 110, 275, 550121116566abundant, composite, primitive abundant
551 1, 19, 29, 551460049deficient, composite
552 1, 2, 3, 4, 6, 8, 12, 23, 24, 46, 69, 92, 138, 184, 276, 552161440888abundant, composite
553 1, 7, 79, 553464087deficient, composite
554 1, 2, 277, 5544834280deficient, composite
555 1, 3, 5, 15, 37, 111, 185, 5558912357deficient, composite
556 1, 2, 4, 139, 278, 5566980424deficient, composite
557 1, 55725581deficient, prime
558 1, 2, 3, 6, 9, 18, 31, 62, 93, 186, 279, 558121248690abundant, composite
559 1, 13, 43, 559461657deficient, composite
560 1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 35, 40, 56, 70, 80, 112, 140, 280, 560201488928abundant, composite
561 1, 3, 11, 17, 33, 51, 187, 5618864303deficient, composite
562 1, 2, 281, 5624846284deficient, composite
563 1, 56325641deficient, prime
564 1, 2, 3, 4, 6, 12, 47, 94, 141, 188, 282, 564121344780abundant, composite
565 1, 5, 113, 5654684119deficient, composite
566 1, 2, 283, 5664852286deficient, composite
567 1, 3, 7, 9, 21, 27, 63, 81, 189, 56710968401deficient, composite
568 1, 2, 4, 8, 71, 142, 284, 56881080512deficient, composite
569 1, 56925701deficient, prime
570 1, 2, 3, 5, 6, 10, 15, 19, 30, 38, 57, 95, 114, 190, 285, 570161440870abundant, composite
571 1, 57125721deficient, prime
572 1, 2, 4, 11, 13, 22, 26, 44, 52, 143, 286, 572121176604abundant, composite, primitive abundant
573 1, 3, 191, 5734768195deficient, composite
574 1, 2, 7, 14, 41, 82, 287, 57481008434deficient, composite
575 1, 5, 23, 25, 115, 5756744169deficient, composite
576 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 5762116511075abundant, composite
577 1, 57725781deficient, prime
578 1, 2, 17, 34, 289, 5786921343deficient, composite
579 1, 3, 193, 5794776197deficient, composite
580 1, 2, 4, 5, 10, 20, 29, 58, 116, 145, 290, 580121260680abundant, composite
581 1, 7, 83, 581467291deficient, composite
582 1, 2, 3, 6, 97, 194, 291, 58281176594abundant, composite
583 1, 11, 53, 583464865deficient, composite
584 1, 2, 4, 8, 73, 146, 292, 58481110526deficient, composite
585 1, 3, 5, 9, 13, 15, 39, 45, 65, 117, 195, 585121092507deficient, composite
586 1, 2, 293, 5864882296deficient, composite
587 1, 58725881deficient, prime
588 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 49, 84, 98, 147, 196, 294, 5881815961008abundant, composite
589 1, 19, 31, 589464051deficient, composite
590 1, 2, 5, 10, 59, 118, 295, 59081080490deficient, composite
591 1, 3, 197, 5914792201deficient, composite
592 1, 2, 4, 8, 16, 37, 74, 148, 296, 592101178586deficient, composite
593 1, 59325941deficient, prime
594 1, 2, 3, 6, 9, 11, 18, 22, 27, 33, 54, 66, 99, 198, 297, 594161440846abundant, composite
595 1, 5, 7, 17, 35, 85, 119, 5958864269deficient, composite
596 1, 2, 4, 149, 298, 59661050454deficient, composite
597 1, 3, 199, 5974800203deficient, composite
598 1, 2, 13, 23, 26, 46, 299, 59881008410deficient, composite
599 1, 59926001deficient, prime
600 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 6002418601260abundant, highly abundant, composite
601 1, 60126021deficient, prime
602 1, 2, 7, 14, 43, 86, 301, 60281056454deficient, composite
603 1, 3, 9, 67, 201, 6036884281deficient, composite
604 1, 2, 4, 151, 302, 60461064460deficient, composite
605 1, 5, 11, 55, 121, 6056798193deficient, composite
606 1, 2, 3, 6, 101, 202, 303, 60681224618abundant, composite
607 1, 60726081deficient, prime
608 1, 2, 4, 8, 16, 19, 32, 38, 76, 152, 304, 608121260652abundant, composite
609 1, 3, 7, 21, 29, 87, 203, 6098960351deficient, composite
610 1, 2, 5, 10, 61, 122, 305, 61081116506deficient, composite
611 1, 13, 47, 611467261deficient, composite
612 1, 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204, 306, 6121816381026abundant, composite
613 1, 61326141deficient, prime
614 1, 2, 307, 6144924310deficient, composite
615 1, 3, 5, 15, 41, 123, 205, 61581008393deficient, composite
616 1, 2, 4, 7, 8, 11, 14, 22, 28, 44, 56, 77, 88, 154, 308, 616161440824abundant, composite
617 1, 61726181deficient, prime
618 1, 2, 3, 6, 103, 206, 309, 61881248630abundant, composite
619 1, 61926201deficient, prime
620 1, 2, 4, 5, 10, 20, 31, 62, 124, 155, 310, 620121344724abundant, composite
621 1, 3, 9, 23, 27, 69, 207, 6218960339deficient, composite
622 1, 2, 311, 6224936314deficient, composite
623 1, 7, 89, 623472097deficient, composite
624 1, 2, 3, 4, 6, 8, 12, 13, 16, 24, 26, 39, 48, 52, 78, 104, 156, 208, 312, 6242017361112abundant, composite
625 1, 5, 25, 125, 6255781156deficient, composite
626 1, 2, 313, 6264942316deficient, composite
627 1, 3, 11, 19, 33, 57, 209, 6278960333deficient, composite
628 1, 2, 4, 157, 314, 62861106478deficient, composite
629 1, 17, 37, 629468455deficient, composite
630 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105, 126, 210, 315, 6302418721242abundant, highly abundant, composite
631 1, 63126321deficient, prime
632 1, 2, 4, 8, 79, 158, 316, 63281200568deficient, composite
633 1, 3, 211, 6334848215deficient, composite
634 1, 2, 317, 6344954320deficient, composite
635 1, 5, 127, 6354768133deficient, composite
636 1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636121512876abundant, composite
637 1, 7, 13, 49, 91, 6376798161deficient, composite
638 1, 2, 11, 22, 29, 58, 319, 63881080442deficient, composite
639 1, 3, 9, 71, 213, 6396936297deficient, composite
640 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640161530890abundant, composite
641 1, 64126421deficient, prime
642 1, 2, 3, 6, 107, 214, 321, 64281296654abundant, composite
643 1, 64326441deficient, prime
644 1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644121344700abundant, composite
645 1, 3, 5, 15, 43, 129, 215, 64581056411deficient, composite
646 1, 2, 17, 19, 34, 38, 323, 64681080434deficient, composite
647 1, 64726481deficient, prime
648 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 81, 108, 162, 216, 324, 6482018151167abundant, composite
649 1, 11, 59, 649472071deficient, composite
650 1, 2, 5, 10, 13, 25, 26, 50, 65, 130, 325, 650121302652abundant, composite, primitive abundant
651 1, 3, 7, 21, 31, 93, 217, 65181024373deficient, composite
652 1, 2, 4, 163, 326, 65261148496deficient, composite
653 1, 65326541deficient, prime
654 1, 2, 3, 6, 109, 218, 327, 65481320666abundant, composite
655 1, 5, 131, 6554792137deficient, composite
656 1, 2, 4, 8, 16, 41, 82, 164, 328, 656101302646deficient, composite
657 1, 3, 9, 73, 219, 6576962305deficient, composite
658 1, 2, 7, 14, 47, 94, 329, 65881152494deficient, composite
659 1, 65926601deficient, prime
660 1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 6602420161356abundant, highly abundant, composite
661 1, 66126621deficient, prime
662 1, 2, 331, 6624996334deficient, composite
663 1, 3, 13, 17, 39, 51, 221, 66381008345deficient, composite
664 1, 2, 4, 8, 83, 166, 332, 66481260596deficient, composite
665 1, 5, 7, 19, 35, 95, 133, 6658960295deficient, composite
666 1, 2, 3, 6, 9, 18, 37, 74, 111, 222, 333, 666121482816abundant, composite
667 1, 23, 29, 667472053deficient, composite
668 1, 2, 4, 167, 334, 66861176508deficient, composite
669 1, 3, 223, 6694896227deficient, composite
670 1, 2, 5, 10, 67, 134, 335, 67081224554deficient, composite
671 1, 11, 61, 671474473deficient, composite
672 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 6722420161344abundant, composite
673 1, 67326741deficient, prime
674 1, 2, 337, 67441014340deficient, composite
675 1, 3, 5, 9, 15, 25, 27, 45, 75, 135, 225, 675121240565deficient, composite
676 1, 2, 4, 13, 26, 52, 169, 338, 67691281605deficient, composite
677 1, 67726781deficient, prime
678 1, 2, 3, 6, 113, 226, 339, 67881368690abundant, composite
679 1, 7, 97, 6794784105deficient, composite
680 1, 2, 4, 5, 8, 10, 17, 20, 34, 40, 68, 85, 136, 170, 340, 680161620940abundant, composite
681 1, 3, 227, 6814912231deficient, composite
682 1, 2, 11, 22, 31, 62, 341, 68281152470deficient, composite
683 1, 68326841deficient, prime
684 1, 2, 3, 4, 6, 9, 12, 18, 19, 36, 38, 57, 76, 114, 171, 228, 342, 6841818201136abundant, composite
685 1, 5, 137, 6854828143deficient, composite
686 1, 2, 7, 14, 49, 98, 343, 68681200514deficient, composite
687 1, 3, 229, 6874920233deficient, composite
688 1, 2, 4, 8, 16, 43, 86, 172, 344, 688101364676deficient, composite
689 1, 13, 53, 689475667deficient, composite
690 1, 2, 3, 5, 6, 10, 15, 23, 30, 46, 69, 115, 138, 230, 345, 6901617281038abundant, composite
691 1, 69126921deficient, prime
692 1, 2, 4, 173, 346, 69261218526deficient, composite
693 1, 3, 7, 9, 11, 21, 33, 63, 77, 99, 231, 693121248555deficient, composite
694 1, 2, 347, 69441044350deficient, composite
695 1, 5, 139, 6954840145deficient, composite
696 1, 2, 3, 4, 6, 8, 12, 24, 29, 58, 87, 116, 174, 232, 348, 6961618001104abundant, composite
697 1, 17, 41, 697475659deficient, composite
698 1, 2, 349, 69841050352deficient, composite
699 1, 3, 233, 6994936237deficient, composite
700 1, 2, 4, 5, 7, 10, 14, 20, 25, 28, 35, 50, 70, 100, 140, 175, 350, 7001817361036abundant, composite
701 1, 70127021deficient, prime
702 1, 2, 3, 6, 9, 13, 18, 26, 27, 39, 54, 78, 117, 234, 351, 702161680978abundant, composite
703 1, 19, 37, 703476057deficient, composite
704 1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704141524820abundant, composite
705 1, 3, 5, 15, 47, 141, 235, 70581152447deficient, composite
706 1, 2, 353, 70641062356deficient, composite
707 1, 7, 101, 7074816109deficient, composite
708 1, 2, 3, 4, 6, 12, 59, 118, 177, 236, 354, 708121680972abundant, composite
709 1, 70927101deficient, prime
710 1, 2, 5, 10, 71, 142, 355, 71081296586deficient, composite
711 1, 3, 9, 79, 237, 71161040329deficient, composite
712 1, 2, 4, 8, 89, 178, 356, 71281350638deficient, composite
713 1, 23, 31, 713476855deficient, composite
714 1, 2, 3, 6, 7, 14, 17, 21, 34, 42, 51, 102, 119, 238, 357, 7141617281014abundant, composite
715 1, 5, 11, 13, 55, 65, 143, 71581008293deficient, composite
716 1, 2, 4, 179, 358, 71661260544deficient, composite
717 1, 3, 239, 7174960243deficient, composite
718 1, 2, 359, 71841080362deficient, composite
719 1, 71927201deficient, prime
720 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 7203024181698abundant, highly abundant, composite, highly composite
721 1, 7, 103, 7214832111deficient, composite
722 1, 2, 19, 38, 361, 72261143421deficient, composite
723 1, 3, 241, 7234968245deficient, composite
724 1, 2, 4, 181, 362, 72461274550deficient, composite
725 1, 5, 25, 29, 145, 7256930205deficient, composite
726 1, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 726121596870abundant, composite
727 1, 72727281deficient, prime
728 1, 2, 4, 7, 8, 13, 14, 26, 28, 52, 56, 91, 104, 182, 364, 728161680952abundant, composite
729 1, 3, 9, 27, 81, 243, 72971093364deficient, composite
730 1, 2, 5, 10, 73, 146, 365, 73081332602deficient, composite
731 1, 17, 43, 731479261deficient, composite
732 1, 2, 3, 4, 6, 12, 61, 122, 183, 244, 366, 7321217361004abundant, composite
733 1, 73327341deficient, prime
734 1, 2, 367, 73441104370deficient, composite
735 1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735121368633deficient, composite
736 1, 2, 4, 8, 16, 23, 32, 46, 92, 184, 368, 736121512776abundant, composite
737 1, 11, 67, 737481679deficient, composite
738 1, 2, 3, 6, 9, 18, 41, 82, 123, 246, 369, 738121638900abundant, composite
739 1, 73927401deficient, prime
740 1, 2, 4, 5, 10, 20, 37, 74, 148, 185, 370, 740121596856abundant, composite
741 1, 3, 13, 19, 39, 57, 247, 74181120379deficient, composite
742 1, 2, 7, 14, 53, 106, 371, 74281296554deficient, composite
743 1, 74327441deficient, prime
744 1, 2, 3, 4, 6, 8, 12, 24, 31, 62, 93, 124, 186, 248, 372, 7441619201176abundant, composite
745 1, 5, 149, 7454900155deficient, composite
746 1, 2, 373, 74641122376deficient, composite
747 1, 3, 9, 83, 249, 74761092345deficient, composite
748 1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748121512764abundant, composite, primitive abundant
749 1, 7, 107, 7494864115deficient, composite
750 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 150, 250, 375, 7501618721122abundant, composite
751 1, 75127521deficient, prime
752 1, 2, 4, 8, 16, 47, 94, 188, 376, 752101488736deficient, composite
753 1, 3, 251, 75341008255deficient, composite
754 1, 2, 13, 26, 29, 58, 377, 75481260506deficient, composite
755 1, 5, 151, 7554912157deficient, composite
756 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 27, 28, 36, 42, 54, 63, 84, 108, 126, 189, 252, 378, 7562422401484abundant, composite
757 1, 75727581deficient, prime
758 1, 2, 379, 75841140382deficient, composite
759 1, 3, 11, 23, 33, 69, 253, 75981152393deficient, composite
760 1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 7601618001040abundant, composite
761 1, 76127621deficient, prime
762 1, 2, 3, 6, 127, 254, 381, 76281536774abundant, composite
763 1, 7, 109, 7634880117deficient, composite
764 1, 2, 4, 191, 382, 76461344580deficient, composite
765 1, 3, 5, 9, 15, 17, 45, 51, 85, 153, 255, 765121404639deficient, composite
766 1, 2, 383, 76641152386deficient, composite
767 1, 13, 59, 767484073deficient, composite
768 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 7681820441276abundant, composite
769 1, 76927701deficient, prime
770 1, 2, 5, 7, 10, 11, 14, 22, 35, 55, 70, 77, 110, 154, 385, 770161728958abundant, composite
771 1, 3, 257, 77141032261deficient, composite
772 1, 2, 4, 193, 386, 77261358586deficient, composite
773 1, 77327741deficient, prime
774 1, 2, 3, 6, 9, 18, 43, 86, 129, 258, 387, 774121716942abundant, composite
775 1, 5, 25, 31, 155, 7756992217deficient, composite
776 1, 2, 4, 8, 97, 194, 388, 77681470694deficient, composite
777 1, 3, 7, 21, 37, 111, 259, 77781216439deficient, composite
778 1, 2, 389, 77841170392deficient, composite
779 1, 19, 41, 779484061deficient, composite
780 1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390, 7802423521572abundant, composite
781 1, 11, 71, 781486483deficient, composite
782 1, 2, 17, 23, 34, 46, 391, 78281296514deficient, composite
783 1, 3, 9, 27, 29, 87, 261, 78381200417deficient, composite
784 1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, 784151767983abundant, composite
785 1, 5, 157, 7854948163deficient, composite
786 1, 2, 3, 6, 131, 262, 393, 78681584798abundant, composite
787 1, 78727881deficient, prime
788 1, 2, 4, 197, 394, 78861386598deficient, composite
789 1, 3, 263, 78941056267deficient, composite
790 1, 2, 5, 10, 79, 158, 395, 79081440650deficient, composite
791 1, 7, 113, 7914912121deficient, composite
792 1, 2, 3, 4, 6, 8, 9, 11, 12, 18, 22, 24, 33, 36, 44, 66, 72, 88, 99, 132, 198, 264, 396, 7922423401548abundant, composite
793 1, 13, 61, 793486875deficient, composite
794 1, 2, 397, 79441194400deficient, composite
795 1, 3, 5, 15, 53, 159, 265, 79581296501deficient, composite
796 1, 2, 4, 199, 398, 79661400604deficient, composite
797 1, 79727981deficient, prime
798 1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 57, 114, 133, 266, 399, 7981619201122abundant, composite
799 1, 17, 47, 799486465deficient, composite
800 1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 80, 100, 160, 200, 400, 8001819531153abundant, composite
801 1, 3, 9, 89, 267, 80161170369deficient, composite
802 1, 2, 401, 80241206404deficient, composite
803 1, 11, 73, 803488885deficient, composite
804 1, 2, 3, 4, 6, 12, 67, 134, 201, 268, 402, 8041219041100abundant, composite
805 1, 5, 7, 23, 35, 115, 161, 80581152347deficient, composite
806 1, 2, 13, 26, 31, 62, 403, 80681344538deficient, composite
807 1, 3, 269, 80741080273deficient, composite
808 1, 2, 4, 8, 101, 202, 404, 80881530722deficient, composite
809 1, 80928101deficient, prime
810 1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405, 8102021781368abundant, composite
811 1, 81128121deficient, prime
812 1, 2, 4, 7, 14, 28, 29, 58, 116, 203, 406, 812121680868abundant, composite
813 1, 3, 271, 81341088275deficient, composite
814 1, 2, 11, 22, 37, 74, 407, 81481368554deficient, composite
815 1, 5, 163, 8154984169deficient, composite
816 1, 2, 3, 4, 6, 8, 12, 16, 17, 24, 34, 48, 51, 68, 102, 136, 204, 272, 408, 8162022321416abundant, composite
817 1, 19, 43, 817488063deficient, composite
818 1, 2, 409, 81841230412deficient, composite
819 1, 3, 7, 9, 13, 21, 39, 63, 91, 117, 273, 819121456637deficient, composite
820 1, 2, 4, 5, 10, 20, 41, 82, 164, 205, 410, 820121764944abundant, composite
821 1, 82128221deficient, prime
822 1, 2, 3, 6, 137, 274, 411, 82281656834abundant, composite
823 1, 82328241deficient, prime
824 1, 2, 4, 8, 103, 206, 412, 82481560736deficient, composite
825 1, 3, 5, 11, 15, 25, 33, 55, 75, 165, 275, 825121488663deficient, composite
826 1, 2, 7, 14, 59, 118, 413, 82681440614deficient, composite
827 1, 82728281deficient, prime
828 1, 2, 3, 4, 6, 9, 12, 18, 23, 36, 46, 69, 92, 138, 207, 276, 414, 8281821841356abundant, composite
829 1, 82928301deficient, prime
830 1, 2, 5, 10, 83, 166, 415, 83081512682deficient, composite
831 1, 3, 277, 83141112281deficient, composite
832 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832141778946abundant, composite
833 1, 7, 17, 49, 119, 83361026193deficient, composite
834 1, 2, 3, 6, 139, 278, 417, 83481680846abundant, composite
835 1, 5, 167, 83541008173deficient, composite
836 1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418, 836121680844abundant, composite, primitive abundant, weird
837 1, 3, 9, 27, 31, 93, 279, 83781280443deficient, composite
838 1, 2, 419, 83841260422deficient, composite
839 1, 83928401deficient, prime
840 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 8403228802040abundant, highly abundant, composite, highly composite
841 1, 29, 841387130deficient, composite
842 1, 2, 421, 84241266424deficient, composite
843 1, 3, 281, 84341128285deficient, composite
844 1, 2, 4, 211, 422, 84461484640deficient, composite
845 1, 5, 13, 65, 169, 84561098253deficient, composite
846 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 8461218721026abundant, composite
847 1, 7, 11, 77, 121, 84761064217deficient, composite
848 1, 2, 4, 8, 16, 53, 106, 212, 424, 848101674826deficient, composite
849 1, 3, 283, 84941136287deficient, composite
850 1, 2, 5, 10, 17, 25, 34, 50, 85, 170, 425, 850121674824deficient, composite
851 1, 23, 37, 851491261deficient, composite
852 1, 2, 3, 4, 6, 12, 71, 142, 213, 284, 426, 8521220161164abundant, composite
853 1, 85328541deficient, prime
854 1, 2, 7, 14, 61, 122, 427, 85481488634deficient, composite
855 1, 3, 5, 9, 15, 19, 45, 57, 95, 171, 285, 855121560705deficient, composite
856 1, 2, 4, 8, 107, 214, 428, 85681620764deficient, composite
857 1, 85728581deficient, prime
858 1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 8581620161158abundant, composite
859 1, 85928601deficient, prime
860 1, 2, 4, 5, 10, 20, 43, 86, 172, 215, 430, 860121848988abundant, composite
861 1, 3, 7, 21, 41, 123, 287, 86181344483deficient, composite
862 1, 2, 431, 86241296434deficient, composite
863 1, 86328641deficient, prime
864 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 96, 108, 144, 216, 288, 432, 8642425201656abundant, composite
865 1, 5, 173, 86541044179deficient, composite
866 1, 2, 433, 86641302436deficient, composite
867 1, 3, 17, 51, 289, 86761228361deficient, composite
868 1, 2, 4, 7, 14, 28, 31, 62, 124, 217, 434, 868121792924abundant, composite
869 1, 11, 79, 869496091deficient, composite
870 1, 2, 3, 5, 6, 10, 15, 29, 30, 58, 87, 145, 174, 290, 435, 8701621601290abundant, composite
871 1, 13, 67, 871495281deficient, composite
872 1, 2, 4, 8, 109, 218, 436, 87281650778deficient, composite
873 1, 3, 9, 97, 291, 87361274401deficient, composite
874 1, 2, 19, 23, 38, 46, 437, 87481440566deficient, composite
875 1, 5, 7, 25, 35, 125, 175, 87581248373deficient, composite
876 1, 2, 3, 4, 6, 12, 73, 146, 219, 292, 438, 8761220721196abundant, composite
877 1, 87728781deficient, prime
878 1, 2, 439, 87841320442deficient, composite
879 1, 3, 293, 87941176297deficient, composite
880 1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 40, 44, 55, 80, 88, 110, 176, 220, 440, 8802022321352abundant, composite
881 1, 88128821deficient, prime
882 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 49, 63, 98, 126, 147, 294, 441, 8821822231341abundant, composite
883 1, 88328841deficient, prime
884 1, 2, 4, 13, 17, 26, 34, 52, 68, 221, 442, 884121764880deficient, composite
885 1, 3, 5, 15, 59, 177, 295, 88581440555deficient, composite
886 1, 2, 443, 88641332446deficient, composite
887 1, 88728881deficient, prime
888 1, 2, 3, 4, 6, 8, 12, 24, 37, 74, 111, 148, 222, 296, 444, 8881622801392abundant, composite
889 1, 7, 127, 88941024135deficient, composite
890 1, 2, 5, 10, 89, 178, 445, 89081620730deficient, composite
891 1, 3, 9, 11, 27, 33, 81, 99, 297, 891101452561deficient, composite
892 1, 2, 4, 223, 446, 89261568676deficient, composite
893 1, 19, 47, 893496067deficient, composite
894 1, 2, 3, 6, 149, 298, 447, 89481800906abundant, composite
895 1, 5, 179, 89541080185deficient, composite
896 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 128, 224, 448, 8961620401144abundant, composite
897 1, 3, 13, 23, 39, 69, 299, 89781344447deficient, composite
898 1, 2, 449, 89841350452deficient, composite
899 1, 29, 31, 899496061deficient, composite
900 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 9002728211921abundant, composite
901 1, 17, 53, 901497271deficient, composite
902 1, 2, 11, 22, 41, 82, 451, 90281512610deficient, composite
903 1, 3, 7, 21, 43, 129, 301, 90381408505deficient, composite
904 1, 2, 4, 8, 113, 226, 452, 90481710806deficient, composite
905 1, 5, 181, 90541092187deficient, composite
906 1, 2, 3, 6, 151, 302, 453, 90681824918abundant, composite
907 1, 90729081deficient, prime
908 1, 2, 4, 227, 454, 90861596688deficient, composite
909 1, 3, 9, 101, 303, 90961326417deficient, composite
910 1, 2, 5, 7, 10, 13, 14, 26, 35, 65, 70, 91, 130, 182, 455, 9101620161106abundant, composite
911 1, 91129121deficient, prime
912 1, 2, 3, 4, 6, 8, 12, 16, 19, 24, 38, 48, 57, 76, 114, 152, 228, 304, 456, 9122024801568abundant, composite
913 1, 11, 83, 9134100895deficient, composite
914 1, 2, 457, 91441374460deficient, composite
915 1, 3, 5, 15, 61, 183, 305, 91581488573deficient, composite
916 1, 2, 4, 229, 458, 91661610694deficient, composite
917 1, 7, 131, 91741056139deficient, composite
918 1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, 9181621601242abundant, composite
919 1, 91929201deficient, prime
920 1, 2, 4, 5, 8, 10, 20, 23, 40, 46, 92, 115, 184, 230, 460, 9201621601240abundant, composite
921 1, 3, 307, 92141232311deficient, composite
922 1, 2, 461, 92241386464deficient, composite
923 1, 13, 71, 9234100885deficient, composite
924 1, 2, 3, 4, 6, 7, 11, 12, 14, 21, 22, 28, 33, 42, 44, 66, 77, 84, 132, 154, 231, 308, 462, 9242426881764abundant, composite
925 1, 5, 25, 37, 185, 92561178253deficient, composite
926 1, 2, 463, 92641392466deficient, composite
927 1, 3, 9, 103, 309, 92761352425deficient, composite
928 1, 2, 4, 8, 16, 29, 32, 58, 116, 232, 464, 928121890962abundant, composite
929 1, 92929301deficient, prime
930 1, 2, 3, 5, 6, 10, 15, 30, 31, 62, 93, 155, 186, 310, 465, 9301623041374abundant, composite
931 1, 7, 19, 49, 133, 93161140209deficient, composite
932 1, 2, 4, 233, 466, 93261638706deficient, composite
933 1, 3, 311, 93341248315deficient, composite
934 1, 2, 467, 93441404470deficient, composite
935 1, 5, 11, 17, 55, 85, 187, 93581296361deficient, composite
936 1, 2, 3, 4, 6, 8, 9, 12, 13, 18, 24, 26, 36, 39, 52, 72, 78, 104, 117, 156, 234, 312, 468, 9362427301794abundant, composite
937 1, 93729381deficient, prime
938 1, 2, 7, 14, 67, 134, 469, 93881632694deficient, composite
939 1, 3, 313, 93941256317deficient, composite
940 1, 2, 4, 5, 10, 20, 47, 94, 188, 235, 470, 9401220161076abundant, composite
941 1, 94129421deficient, prime
942 1, 2, 3, 6, 157, 314, 471, 94281896954abundant, composite
943 1, 23, 41, 9434100865deficient, composite
944 1, 2, 4, 8, 16, 59, 118, 236, 472, 944101860916deficient, composite
945 1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945161920975abundant, composite, primitive abundant
946 1, 2, 11, 22, 43, 86, 473, 94681584638deficient, composite
947 1, 94729481deficient, prime
948 1, 2, 3, 4, 6, 12, 79, 158, 237, 316, 474, 9481222401292abundant, composite
949 1, 13, 73, 9494103687deficient, composite
950 1, 2, 5, 10, 19, 25, 38, 50, 95, 190, 475, 950121860910deficient, composite
951 1, 3, 317, 95141272321deficient, composite
952 1, 2, 4, 7, 8, 14, 17, 28, 34, 56, 68, 119, 136, 238, 476, 9521621601208abundant, composite
953 1, 95329541deficient, prime
954 1, 2, 3, 6, 9, 18, 53, 106, 159, 318, 477, 9541221061152abundant, composite
955 1, 5, 191, 95541152197deficient, composite
956 1, 2, 4, 239, 478, 95661680724deficient, composite
957 1, 3, 11, 29, 33, 87, 319, 95781440483deficient, composite
958 1, 2, 479, 95841440482deficient, composite
959 1, 7, 137, 95941104145deficient, composite
960 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, 480, 9602830482088abundant, highly abundant, composite
961 1, 31, 961399332deficient, composite
962 1, 2, 13, 26, 37, 74, 481, 96281596634deficient, composite
963 1, 3, 9, 107, 321, 96361404441deficient, composite
964 1, 2, 4, 241, 482, 96461694730deficient, composite
965 1, 5, 193, 96541164199deficient, composite
966 1, 2, 3, 6, 7, 14, 21, 23, 42, 46, 69, 138, 161, 322, 483, 9661623041338abundant, composite
967 1, 96729681deficient, prime
968 1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 9681219951027abundant, composite
969 1, 3, 17, 19, 51, 57, 323, 96981440471deficient, composite
970 1, 2, 5, 10, 97, 194, 485, 97081764794deficient, composite
971 1, 97129721deficient, prime
972 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 9721825481576abundant, composite
973 1, 7, 139, 97341120147deficient, composite
974 1, 2, 487, 97441464490deficient, composite
975 1, 3, 5, 13, 15, 25, 39, 65, 75, 195, 325, 975121736761deficient, composite
976 1, 2, 4, 8, 16, 61, 122, 244, 488, 976101922946deficient, composite
977 1, 97729781deficient, prime
978 1, 2, 3, 6, 163, 326, 489, 97881968990abundant, composite
979 1, 11, 89, 97941080101deficient, composite
980 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 49, 70, 98, 140, 196, 245, 490, 9801823941414abundant, composite
981 1, 3, 9, 109, 327, 98161430449deficient, composite
982 1, 2, 491, 98241476494deficient, composite
983 1, 98329841deficient, prime
984 1, 2, 3, 4, 6, 8, 12, 24, 41, 82, 123, 164, 246, 328, 492, 9841625201536abundant, composite
985 1, 5, 197, 98541188203deficient, composite
986 1, 2, 17, 29, 34, 58, 493, 98681620634deficient, composite
987 1, 3, 7, 21, 47, 141, 329, 98781536549deficient, composite
988 1, 2, 4, 13, 19, 26, 38, 52, 76, 247, 494, 988121960972deficient, composite
989 1, 23, 43, 9894105667deficient, composite
990 1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 9902428081818abundant, composite
991 1, 99129921deficient, prime
992 1, 2, 4, 8, 16, 31, 32, 62, 124, 248, 496, 9921220161024abundant, composite
993 1, 3, 331, 99341328335deficient, composite
994 1, 2, 7, 14, 71, 142, 497, 99481728734deficient, composite
995 1, 5, 199, 99541200205deficient, composite
996 1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498, 9961223521356abundant, composite
997 1, 99729981deficient, prime
998 1, 2, 499, 99841500502deficient, composite
999 1, 3, 9, 27, 37, 111, 333, 99981520521deficient, composite
1000 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 10001623401340abundant, composite

See also

Related Research Articles

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

<span class="mw-page-title-main">Divisor</span> Integer that is a factor of another integer

In mathematics, a divisor of an integer also called a factor of is an integer that may be multiplied by some integer to produce In this case, one also says that is a multiple of An integer is divisible or evenly divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder.

2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures.

In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.

A highly composite number is a positive integer with more divisors than any smaller positive integer has. A related concept is that of a largely composite number, a positive integer which has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers are not actually composite numbers; however, all further terms are.

<span class="mw-page-title-main">Multiply perfect number</span> Number whose divisors add to a multiple of that number

In mathematics, a multiply perfect number is a generalization of a perfect number.

<span class="mw-page-title-main">Abundant number</span> Number that is less than the sum of its proper divisors

In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

<span class="mw-page-title-main">Deficient number</span> Number whose divisor sum is less than itself

In number theory, a deficient number or defective number is a positive integer n for which the sum of divisors of n is less than 2n. Equivalently, it is a number for which the sum of proper divisors is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient.

<span class="mw-page-title-main">Weird number</span> Number which is abundant but not semiperfect

In number theory, a weird number is a natural number that is abundant but not semiperfect. In other words, the sum of the proper divisors of the number is greater than the number, but no subset of those divisors sums to the number itself.

<span class="mw-page-title-main">Almost perfect number</span> Class of natural number

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficientnumber) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

One half (pl. halves) is the irreducible fraction resulting from dividing one (1) by two (2), or the fraction resulting from dividing any number by its double.

In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.

<span class="mw-page-title-main">Practical number</span> Number such that it and all smaller numbers may be represented as sums of its distinct divisors

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

In mathematics, a superabundant number is a certain kind of natural number. A natural number n is called superabundant precisely when, for all m < n:

<span class="mw-page-title-main">Colossally abundant number</span> Type of natural number

In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.

<span class="mw-page-title-main">Highly abundant number</span> Natural number whose divisor sum is greater than that of any smaller number

In number theory, a highly abundant number is a natural number with the property that the sum of its divisors is greater than the sum of the divisors of any smaller natural number.

<span class="mw-page-title-main">Superior highly composite number</span> Class of natural numbers

In number theory, a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors. Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.

In number theory, the aliquot sums(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is,