This article needs additional citations for verification .(May 2012) |
A round number is an integer that ends with one or more "0"s (zero-digit) in a given base. [1] So, 590 is rounder than 592, but 590 is less round than 600. In both technical and informal language, a round number is often interpreted to stand for a value or values near to the nominal value expressed. For instance, a round number such as 600 might be used to refer to a value whose magnitude is actually 592, because the actual value is more cumbersome to express exactly. Likewise, a round number may refer to a range of values near the nominal value that expresses imprecision about a quantity. [2] Thus, a value reported as 600 might actually represent any value near 600, possibly as low as 550 or as high as 649.99..., all of which would round to 600.
In decimal notation, a number ending in the digit "5" is also considered more round than one ending in another non-zero digit (but less round than any which ends with "0"). [2] [3] For example, the number 25 tends to be seen as more round than 24. Thus someone might say, upon turning 45, that their age is more round than when they turn 44 or 46. These notions of roundness are also often applied to non-integer numbers; so, in any given base, 2.3 is rounder than 2.297, because 2.3 can be written as 2.300. Thus, a number with fewer digits which are not trailing "0"s is considered to be rounder than others of the same or greater precision.
Numbers can also be considered "round" in numbering systems other than decimal (base 10). For example, the number 1024 would not be considered round in decimal, but the same number ends with a zero in several other numbering systems including binary (base 2: 10000000000), octal (base 8: 2000), and hexadecimal (base 16: 400). The previous discussion about the digit "5" generalizes to the digit representing b/2 for base-b notation, if b is even.
Psychologically, round numbers form waypoints in pricing and negotiation. So, starting salaries are usually round numbers. Prices are often pitched just below round numbers to avoid breaking the psychological barrier of paying the price of the round number.
Round-number anniversaries are often especially celebrated. For example, a fiftieth birthday, the centenary of an event, or the millionth visitor or customer to a location or business.
On January 1, 2000, the round-number year 2000 was widely celebrated. Technically, the 3rd millennium did not begin until January 1, 2001, a year later, as there is no year zero in the Gregorian calendar.
Round number bias is the psychological tendency to prefer round numbers over others, [4] [5] which is passed onto a person through socialization. [6] Round numbers are also easier for a person to remember, process, and perform mathematical operations on. [5]
Round number bias has been observed mainly in retail and grocery, where prices are often just slightly less than a rounded number (ex. $9.99 or $9.95), in investments, including crowdfunding, in the real estate market through mortgages, and number milestones. [7] [8] [9] [10]
Round numbers are often used when estimating the time taken to complete a task. [11]
A round number is mathematically defined as an integer which is the product of a considerable number of comparatively small factors [12] [13] as compared to its neighboring numbers, such as 24 = 2 × 2 × 2 × 3 (4 factors, as opposed to 3 factors for 27; 2 factors for 21, 22, 25, and 26; and 1 factor for 23).
In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications.
The decimal numeral system is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation.
In computing, floating-point arithmetic (FP) in some base is arithmetic that represents subsets of real numbers using a fixed-point value in this base with a fixed precision, scaled by an integral power of this base. Numbers of this form are called floating-point numbers.
IEEE 754-1985 is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. During its 23 years, it was the most widely used format for floating-point computation. It was implemented in software, in the form of floating-point libraries, and in hardware, in the instructions of many CPUs and FPUs. The first integrated circuit to implement the draft of what was to become IEEE 754-1985 was the Intel 8087.
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any non-negative integer using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels, for ordering, and for codes. In common usage, a numeral is not clearly distinguished from the number that it represents.
Double-precision floating-point format is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point.
A ternary numeral system has three as its base. Analogous to a bit, a ternary digit is a trit. One trit is equivalent to log2 3 bits of information.
Sexagesimal, also known as base 60, is a numeral system with sixty as its base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified form—for measuring time, angles, and geographic coordinates.
Rounding or rounding off means replacing a number with an approximate value that has a shorter, simpler, or more explicit representation. For example, replacing $23.4476 with $23.45, the fraction 312/937 with 1/3, or the expression √2 with 1.414.
A numerical digit or numeral is a single symbol used alone or in combinations, to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits of the hands correspond to the ten symbols of the common base 10 numeral system, i.e. the decimal digits.
Significant figures, also referred to as significant digits or sig figs, are specific digits within a number written in positional notation that carry both reliability and necessity in conveying a particular quantity. When presenting the outcome of a measurement, if the number of digits exceeds what the measurement instrument can resolve, only the number of digits within the resolution's capability are dependable and therefore considered significant.
The IEEE Standard for Floating-Point Arithmetic is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably. Many hardware floating-point units use the IEEE 754 standard.
Positional notation, also known as place-value notation, positional numeral system, or simply place value, usually denotes the extension to any base of the Hindu–Arabic numeral system. More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred. In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string.
In computing, fixed-point is a method of representing fractional (non-integer) numbers by storing a fixed number of digits of their fractional part. Dollar amounts, for example, are often stored with exactly two fractional digits, representing the cents. More generally, the term may refer to representing fractional values as integer multiples of some fixed small unit, e.g. a fractional amount of hours as an integer multiple of ten-minute intervals. Fixed-point number representation is often contrasted to the more complicated and computationally demanding floating-point representation.
In computing, signed number representations are required to encode negative numbers in binary number systems.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating.
Single-precision floating-point format is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point.
In computing, decimal32 is a decimal floating-point computer numbering format that occupies 4 bytes (32 bits) in computer memory. Like the binary16 and binary32 formats, it is intended for memory saving storage.
The digits of some specific integers permute or shift cyclically when they are multiplied by a number n. Examples are: