A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2.
Examples of a geometric sequence are powers rk of a fixed non-zero number r, such as 2k and 3k. The general form of a geometric sequence is
where r is the common ratio and a is the initial value.
The sum of a geometric progression's terms is called a geometric series .
The nth term of a geometric sequence with initial value a = a1 and common ratio r is given by
and in general
Geometric sequences satisfy the linear recurrence relation
This is a first order, homogeneous linear recurrence with constant coefficients.
Geometric sequences also satisfy the nonlinear recurrence relation
for every integer
This is a second order nonlinear recurrence with constant coefficients.
When the common ratio of a geometric sequence is positive, the sequence's terms will all share the sign of the first term. When the common ratio of a geometric sequence is negative, the sequence's terms alternate between positive and negative; this is called an alternating sequence. For instance the sequence 1, −3, 9, −27, 81, −243, ... is an alternating geometric sequence with an initial value of 1 and a common ratio of −3. When the initial term and common ratio are complex numbers, the terms' complex arguments follow an arithmetic progression.
If the absolute value of the common ratio is smaller than 1, the terms will decrease in magnitude and approach zero via an exponential decay. If the absolute value of the common ratio is greater than 1, the terms will increase in magnitude and approach infinity via an exponential growth. If the absolute value of the common ratio equals 1, the terms will stay the same size indefinitely, though their signs or complex arguments may change.
Geometric progressions show exponential growth or exponential decline, as opposed to arithmetic progressions showing linear growth or linear decline. This comparison was taken by T.R. Malthus as the mathematical foundation of his An Essay on the Principle of Population . The two kinds of progression are related through the exponential function and the logarithm: exponentiating each term of an arithmetic progression yields a geometric progression, while taking the logarithm of each term in a geometric progression yields an arithmetic progression.
In mathematics, a geometric series is a series in which the ratio of successive adjacent terms is constant. In other words, the sum of consecutive terms of a geometric sequence forms a geometric series. Each term is therefore the geometric mean of its two neighbouring terms, similar to how the terms in an arithmetic series are the arithmetic means of their two neighbouring terms.
Geometric series have been studied in mathematics from at least the time of Euclid in his work, Elements , which explored geometric proportions. Archimedes further advanced the study through his work on infinite sums, particularly in calculating areas and volumes of geometric shapes (for instance calculating the area inside a parabola). In the early development of modern calculus, they were paradigmatic examples of both convergent series and divergent series and thus came to be crucial references for investigations of convergence, for instance in the ratio test for convergence and in the definitions of rates of convergence. Geometric series have further served as prototypes in the study of mathematical objects such as Taylor series, generating functions, and perturbation theories.
Geometric series have been applied to model a wide variety of natural phenomena and social phenomena, such as the expansion of the universe where the common ratio between terms is defined by Hubble's constant, the decay of radioactive carbon-14 atoms where the common ratio between terms is defined by the half-life of carbon-14, probabilities of winning in games of chance where the common ratio could be determined by the odds of a roulette wheel, and the economic values of investments where the common ratio could be determined by a combination of inflation rates and interest rates.
In general, a geometric series is written as , where is the initial term and is the common ratio between adjacent terms. For example, the series
is geometric because each successive term can be obtained by multiplying the previous term by .
Truncated geometric series are called "finite geometric series" in certain branches of mathematics, especially in 19th century calculus and in probability and statistics and their applications.
The standard capital-sigma notation [1] expression for the infinite geometric series is
and the corresponding expression for the finite geometric series is
Any finite geometric series has the sum , and when the infinite series converges to the limit value .
Though geometric series are most commonly found and applied with the real or complex numbers for and , there are also important results and applications for matrix-valued geometric series, function-valued geometric series, p-adic number geometric series, and, most generally, geometric series of elements of abstract algebraic fields, rings, and semirings.The infinite product of a geometric progression is the product of all of its terms. The partial product of a geometric progression up to the term with power is
When and are positive real numbers, this is equivalent to taking the geometric mean of the partial progression's first and last individual terms and then raising that mean to the power given by the number of terms
This corresponds to a similar property of sums of terms of a finite arithmetic sequence: the sum of an arithmetic sequence is the number of terms times the arithmetic mean of the first and last individual terms. This correspondence follows the usual pattern that any arithmetic sequence is a sequence of logarithms of terms of a geometric sequence and any geometric sequence is a sequence of exponentiations of terms of an arithmetic sequence. Sums of logarithms correspond to products of exponentiated values.
Let represent the product up to power . Written out in full,
Carrying out the multiplications and gathering like terms,
The exponent of r is the sum of an arithmetic sequence. Substituting the formula for that sum,
which concludes the proof.
One can rearrange this expression to
Rewriting a as and r as though this is not valid for or
which is the formula in terms of the geometric mean.
A clay tablet from the Early Dynastic Period in Mesopotamia (c. 2900 – c. 2350 BC), identified as MS 3047, contains a geometric progression with base 3 and multiplier 1/2. It has been suggested to be Sumerian, from the city of Shuruppak. It is the only known record of a geometric progression from before the time of old Babylonian mathematics beginning in 2000 BC. [2]
Books VIII and IX of Euclid's Elements analyze geometric progressions (such as the powers of two, see the article for details) and give several of their properties. [3]
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function. It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted . Alternatively, e can be called Napier's constant after John Napier. The Swiss mathematician Jacob Bernoulli discovered the constant while studying compound interest.
The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".
In mathematics, a geometric series is a series in which the ratio of successive adjacent terms is constant. In other words, the sum of consecutive terms of a geometric sequence forms a geometric series. Each term is therefore the geometric mean of its two neighbouring terms, similar to how the terms in an arithmetic series are the arithmetic means of their two neighbouring terms.
In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite set of positive real numbers by using the product of their values. The geometric mean is defined as the nth root of the product of n numbers, i.e., for a set of numbers a1, a2, ..., an, the geometric mean is defined as
In mathematics, a series is, roughly speaking, an addition of infinitely many quantities, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.
In mathematics, the logarithm to baseb is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x. When the base is clear from the context or is irrelevant it is sometimes written log x.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions:
An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that arithmetic progression. For instance, the sequence 5, 7, 9, 11, 13, 15,. .. is an arithmetic progression with a common difference of 2.
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.
The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.
In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though Knuth's up arrow notation and the left-exponent xb are common.
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted
The wheat and chessboard problem is a mathematical problem expressed in textual form as:
If a chessboard were to have wheat placed upon each square such that one grain were placed on the first square, two on the second, four on the third, and so on, how many grains of wheat would be on the chessboard at the finish?
In mathematics, 1 − 2 + 4 − 8 + ⋯ is the infinite series whose terms are the successive powers of two with alternating signs. As a geometric series, it is characterized by its first term, 1, and its common ratio, −2.
In mathematics, an arithmetico-geometric sequence is the result of element-by-element multiplication of the elements of a geometric progression with the corresponding elements of an arithmetic progression. The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory, especially in Bernoulli processes.
Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.