Divergence of the sum of the reciprocals of the primes

Last updated

The sum of the reciprocal of the primes increasing without bound. The x axis is in log scale, showing that the divergence is very slow. The red function is a lower bound that also diverges. Sum of reciprocals of primes.svg
The sum of the reciprocal of the primes increasing without bound. The x axis is in log scale, showing that the divergence is very slow. The red function is a lower bound that also diverges.

The sum of the reciprocals of all prime numbers diverges ; that is:

Contents

This was proved by Leonhard Euler in 1737, [1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).

There are a variety of proofs of Euler's result, including a lower bound for the partial sums stating that

for all natural numbers n. The double natural logarithm (log log) indicates that the divergence might be very slow, which is indeed the case. See Meissel–Mertens constant.

The harmonic series

First, we describe how Euler originally discovered the result. He was considering the harmonic series

He had already used the following "product formula" to show the existence of infinitely many primes.

Here the product is taken over the set of all primes.

Such infinite products are today called Euler products. The product above is a reflection of the fundamental theorem of arithmetic. Euler noted that if there were only a finite number of primes, then the product on the right would clearly converge, contradicting the divergence of the harmonic series.

Proofs

Euler's proof

Euler considered the above product formula and proceeded to make a sequence of audacious leaps of logic. First, he took the natural logarithm of each side, then he used the Taylor series expansion for log x as well as the sum of a converging series:

for a fixed constant K < 1. Then he invoked the relation

which he explained, for instance in a later 1748 work, [2] by setting x = 1 in the Taylor series expansion

This allowed him to conclude that

It is almost certain that Euler meant that the sum of the reciprocals of the primes less than n is asymptotic to log log n as n approaches infinity. It turns out this is indeed the case, and a more precise version of this fact was rigorously proved by Franz Mertens in 1874. [3] Thus Euler obtained a correct result by questionable means.

Erdős's proof by upper and lower estimates

The following proof by contradiction comes from Paul Erdős.

Let pi denote the ith prime number. Assume that the sum of the reciprocals of the primes converges.

Then there exists a smallest positive integer k such that

For a positive integer x, let Mx denote the set of those n in {1, 2, ..., x} which are not divisible by any prime greater than pk (or equivalently all nx which are a product of powers of primes pipk). We will now derive an upper and a lower estimate for |Mx|, the number of elements in Mx. For large x, these bounds will turn out to be contradictory.

Upper estimate
Every n in Mx can be written as n = m2r with positive integers m and r, where r is square-free. Since only the k primes p1, ..., pk can show up (with exponent 1) in the prime factorization of r, there are at most 2k different possibilities for r. Furthermore, there are at most x possible values for m. This gives us the upper estimate
Lower estimate
The remaining x  |Mx| numbers in the set difference {1, 2, ..., x} \ Mx are all divisible by a prime greater than pk. Let Ni,x denote the set of those n in {1, 2, ..., x} which are divisible by the ith prime pi. Then
Since the number of integers in Ni,x is at most x/pi (actually zero for pi > x), we get
Using (1), this implies

This produces a contradiction: when x ≥ 22k + 2, the estimates (2) and (3) cannot both hold, because x/2 ≥ 2kx.

Proof that the series exhibits log-log growth

Here is another proof that actually gives a lower estimate for the partial sums; in particular, it shows that these sums grow at least as fast as log log n. The proof is due to Ivan Niven, [4] adapted from the product expansion idea of Euler. In the following, a sum or product taken over p always represents a sum or product taken over a specified set of primes.

The proof rests upon the following four inequalities:

To see this, note that

and

That is, is one of the summands in the expanded product A. And since is one of the summands of B, every summand is represented in one of the terms of AB when multiplied out. The inequality follows.

Combining all these inequalities, we see that

Dividing through by 5/3 and taking the natural logarithm of both sides gives

as desired.  Q.E.D.

Using

(see the Basel problem), the above constant log 5/3 = 0.51082... can be improved to log π2/6 = 0.4977...; in fact it turns out that

where M = 0.261497... is the Meissel–Mertens constant (somewhat analogous to the much more famous Euler–Mascheroni constant).

Proof from Dusart's inequality

From Dusart's inequality, we get

Then

by the integral test for convergence. This shows that the series on the left diverges.

Geometric and harmonic-series proof

The following proof is modified from James A. Clarkson. [5]

Define the k-th tail

Then for , the expansion of contains at least one term for each reciprocal of a positive integer with exactly prime factors (counting multiplicities) only from the set . It follows that the geometric series contains at least one term for each reciprocal of a positive integer not divisible by any . But since always satisfies this criterion,

by the divergence of the harmonic series. This shows that for all , and since the tails of a convergent series must themselves converge to zero, this proves divergence.

Partial sums

While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer.

One proof [6] is by induction: The first partial sum is 1/2, which has the form odd/even. If the nth partial sum (for n ≥ 1) has the form odd/even, then the (n + 1)st sum is

as the (n + 1)st prime pn + 1 is odd; since this sum also has an odd/even form, this partial sum cannot be an integer (because 2 divides the denominator but not the numerator), and the induction continues.

Another proof rewrites the expression for the sum of the first n reciprocals of primes (or indeed the sum of the reciprocals of any set of primes) in terms of the least common denominator, which is the product of all these primes. Then each of these primes divides all but one of the numerator terms and hence does not divide the numerator itself; but each prime does divide the denominator. Thus the expression is irreducible and is non-integer.

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

In mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics and computer science, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted x or ceil(x).

The Liouville Lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

<span class="mw-page-title-main">Harmonic series (mathematics)</span> Divergent sum of all positive unit fractions

In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions:

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

<span class="mw-page-title-main">Partition function (number theory)</span> The number of partitions of an integer

In number theory, the partition functionp(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up years later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that

In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles.

Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proved by Euclid in his work Elements. There are several proofs of the theorem.

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

References

  1. Euler, Leonhard (1737). "Variae observationes circa series infinitas" [Various observations concerning infinite series]. Commentarii Academiae Scientiarum Petropolitanae. 9: 160–188.
  2. Euler, Leonhard (1748). Introductio in analysin infinitorum. Tomus Primus[Introduction to Infinite Analysis. Volume I]. Lausanne: Bousquet. p. 228, ex. 1.
  3. Mertens, F. (1874). "Ein Beitrag zur analytischen Zahlentheorie". J. Reine Angew. Math. 78: 46–62.
  4. Niven, Ivan, "A Proof of the Divergence of Σ 1/p", The American Mathematical Monthly, Vol. 78, No. 3 (Mar. 1971), pp. 272-273. The half-page proof is expanded by William Dunham in Euler: The Master of Us All, pp. 74-76.
  5. Clarkson, James (1966). "On the series of prime reciprocals" (PDF). Proc. Amer. Math. Soc. 17: 541.
  6. Lord, Nick (2015). "Quick proofs that certain sums of fractions are not integers". The Mathematical Gazette. 99: 128–130. doi:10.1017/mag.2014.16. S2CID   123890989.

Sources