3000 (number)

Last updated
2999 3000 3001
Cardinal three thousand
Ordinal 3000th
(three thousandth)
Factorization 23 × 3 × 53
Greek numeral ,Γ´
Roman numeral MMM
Unicode symbol(s)MMM, mmm
Binary 1011101110002
Ternary 110100103
Senary 215206
Octal 56708
Duodecimal 18A012
Hexadecimal BB816
Armenian Վ
Egyptian hieroglyph 𓆾

3000 (three thousand) is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English (when "and" is required from 101 forward).

Contents

Selected numbers in the range 3001–3999

3001 to 3099

3100 to 3199

3200 to 3299

3300 to 3399

3400 to 3499

3500 to 3599

3600 to 3699

3700 to 3799

3800 to 3899

3900 to 3999

Prime numbers

There are 120 prime numbers between 3000 and 4000: [33] [34]

3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989

Related Research Articles

81 (eighty-one) is the natural number following 80 and preceding 82.

55 (fifty-five) is the natural number following 54 and preceding 56.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

300 is the natural number following 299 and preceding 301.

<span class="mw-page-title-main">360 (number)</span> Natural number

360 is the natural number following 359 and preceding 361.

400 is the natural number following 399 and preceding 401.

500 is the natural number following 499 and preceding 501.

700 is the natural number following 699 and preceding 701.

600 is the natural number following 599 and preceding 601.

800 is the natural number following 799 and preceding 801.

900 is the natural number following 899 and preceding 901. It is the square of 30 and the sum of Euler's totient function for the first 54 positive integers. In base 10 it is a Harshad number. It is also the first number to be the square of a sphenic number.

2000 is a natural number following 1999 and preceding 2001.

4000 is the natural number following 3999 and preceding 4001. It is a decagonal number.

5000 is the natural number following 4999 and preceding 5001. Five thousand is the largest isogrammic numeral in the English language.

6000 is the natural number following 5999 and preceding 6001.

7000 is the natural number following 6999 and preceding 7001.

8000 is the natural number following 7999 and preceding 8001.

204 is the natural number following 203 and preceding 205.

253 is the natural number following 252 and preceding 254.

9000 is the natural number following 8999 and preceding 9001.

References

  1. 1 2 3 4 5 Sloane, N. J. A. (ed.). "SequenceA016754(Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. Sloane, N. J. A. (ed.). "SequenceA051624(12-gonal (or dodecagonal) numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  3. 1 2 3 4 5 Sloane, N. J. A. (ed.). "SequenceA069099(Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  4. 1 2 3 4 Sloane, N. J. A. (ed.). "SequenceA001107(10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  5. 1 2 Sloane, N. J. A. (ed.). "SequenceA005898(Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  6. Sloane, N. J. A. (ed.). "SequenceA082897(Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  7. 1 2 3 4 5 Sloane, N. J. A. (ed.). "SequenceA001106(9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  8. 1 2 Sloane, N. J. A. (ed.). "SequenceA002411(Pentagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  9. 1 2 3 4 5 6 Sloane, N. J. A. (ed.). "SequenceA001844(Centered square numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  10. Sloane, N. J. A. (ed.). "SequenceA000073(Tribonacci numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  11. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA080076(Proth primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  12. 1 2 3 4 Sloane, N. J. A. (ed.). "SequenceA100827(Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  13. 1 2 3 4 5 Sloane, N. J. A. (ed.). "SequenceA005282(Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  14. Sloane, N. J. A. (ed.). "SequenceA000055(Number of trees with n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  15. 1 2 Sloane, N. J. A. (ed.). "SequenceA002407(Cuban primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  16. Sloane, N. J. A. (ed.). "SequenceA332835(Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  17. Bashelor, Andrew; Ksir, Amy; Traves, Will (2008), "Enumerative algebraic geometry of conics." (PDF), Amer. Math. Monthly, 115 (8): 701–728, doi:10.1080/00029890.2008.11920584, JSTOR   27642583, MR   2456094, S2CID   16822027
  18. 1 2 Sloane, N. J. A. (ed.). "SequenceA000292(Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  19. Sloane, N. J. A. (ed.). "SequenceA050217(Super-Poulet numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  20. 1 2 Sloane, N. J. A. (ed.). "SequenceA005900(Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  21. 1 2 3 4 Sloane, N. J. A. (ed.). "SequenceA006562(Balanced primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  22. Sloane, N. J. A. (ed.). "SequenceA000931(Padovan sequence)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  23. 1 2 Sloane, N. J. A. (ed.). "SequenceA002648(A variant of the cuban primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  24. Sloane, N. J. A. (ed.). "SequenceA007053(Number of primes <= 2^n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  25. Sloane, N. J. A. (ed.). "SequenceA000032(Lucas numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  26. Sloane, N. J. A. (ed.). "SequenceA082079(Balanced primes of order four)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  27. Sloane, N. J. A. (ed.). "SequenceA007629(Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  28. Sloane, N. J. A. (ed.). "SequenceA000013(Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  29. Sloane, N. J. A. (ed.). "SequenceA000011(Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  30. Sloane, N. J. A. (ed.). "SequenceA046528(Numbers that are a product of distinct Mersenne primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  31. Sloane, N. J. A. (ed.). "SequenceA247838(Numbers n such that sigma(sigma(n)) is prime)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  32. Lamb, Evelyn (October 25, 2019), "Farewell to the Fractional Foot", Roots of Unity, Scientific American
  33. Sloane, N. J. A. (ed.). "SequenceA038823(Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  34. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.