line segment from A to B
repeated 0.1428571428571428571...
complex conjugate
boolean NOT (A AND B)
radical ab + 2
bracketing function
Vinculum usage
A vinculum (from Latin vinculum 'fetter, chain, tie') is a horizontal line used in mathematical notation for various purposes. It may be placed as an overline or underline above or below a mathematical expression to group the expression's elements. Historically, vincula were extensively used to group items together, especially in written mathematics, but in modern mathematics its use for this purpose has almost entirely been replaced by the use of parentheses. [1] It was also used to mark Roman numerals whose values are multiplied by 1,000. [2] Today, however, the common usage of a vinculum to indicate the repetend of a repeating decimal [3] [4] is a significant exception and reflects the original usage.
The vinculum, in its general use, was introduced by Frans van Schooten in 1646 as he edited the works of François Viète (who had himself not used this notation). However, earlier versions, such as using an underline as Chuquet did in 1484, or in limited form as Descartes did in 1637, using it only in relation to the radical sign, were common. [5]
A vinculum can indicate a line segment where A and B are the endpoints:
A vinculum can indicate the repetend of a repeating decimal value:
A vinculum can indicate the complex conjugate of a complex number:
Logarithm of a number less than 1 can conveniently be represented using vinculum:
In Boolean algebra, a vinculum may be used to represent the operation of inversion (also known as the NOT function):
meaning that Y is false only when both A and B are both true - or by extension, Y is true when either A or B is false.
Similarly, it is used to show the repeating terms in a periodic continued fraction. Quadratic irrational numbers are the only numbers that have these.
Formerly its main use was as a notation to indicate a group (a bracketing device serving the same function as parentheses):
meaning to add b and c first and then subtract the result from a, which would be written more commonly today as a − (b + c). Parentheses, used for grouping, are only rarely found in the mathematical literature before the eighteenth century. The vinculum was used extensively, usually as an overline, but Chuquet in 1484 used the underline version. [6]
In India, the use of this notation is still tested in primary school. [7]
The vinculum is used as part of the notation of a radical to indicate the radicand whose root is being indicated. In the following, the quantity is the whole radicand, and thus has a vinculum over it:
In 1637 Descartes was the first to unite the German radical sign √ with the vinculum to create the radical symbol in common use today. [8]
The symbol used to indicate a vinculum need not be a line segment (overline or underline); sometimes braces can be used (pointing either up or down). [9]
In LaTeX, a text <text> can be overlined with $\overline{\mbox{<text>}}$
. The inner \mbox{}
is necessary to override the math-mode (here invoked by the dollar signs) which the \overline{}
demands.
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; often said as "b to the power n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: In particular, .
In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression.
In mathematics, an nth root of a number x is a number r which, when raised to the power of the positive integer n, yields x:
The plus–minus sign or plus-or-minus sign, ±, is a symbol with multiple meanings.
In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small increments of x and y, respectively, just as Δx and Δy represent finite increments of x and y, respectively.
Positional notation, also known as place-value notation, positional numeral system, or simply place value, usually denotes the extension to any base of the Hindu–Arabic numeral system. More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred. In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string.
142,857 is the natural number following 142,856 and preceding 142,858. It is a Kaprekar number.
A fraction represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction consists of an integer numerator, displayed above a line, and a non-zero integer denominator, displayed below that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction 3/4, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3/4 of a cake.
Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits. The name refers to the bijection that exists in this case between the set of non-negative integers and the set of finite strings using a finite set of symbols.
A decimal representation of a non-negative real number r is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: Here . is the decimal separator, k is a nonnegative integer, and are digits, which are symbols representing integers in the range 0, ..., 9.
An overline, overscore, or overbar, is a typographical feature of a horizontal line drawn immediately above the text. In old mathematical notation, an overline was called a vinculum, a notation for grouping symbols which is expressed in modern notation by parentheses, though it persists for symbols under a radical sign. The original use in Ancient Greek was to indicate compositions of Greek letters as Greek numerals. In Latin, it indicates Roman numerals multiplied by a thousand and it forms medieval abbreviations (sigla). Marking one or more words with a continuous line above the characters is sometimes called overstriking, though overstriking generally refers to printing one character on top of an already-printed character.
In mathematics, brackets of various typographical forms, such as parentheses ( ), square brackets [ ], braces { } and angle brackets ⟨ ⟩, are frequently used in mathematical notation. Generally, such bracketing denotes some form of grouping: in evaluating an expression containing a bracketed sub-expression, the operators in the sub-expression take precedence over those surrounding it. Sometimes, for the clarity of reading, different kinds of brackets are used to express the same meaning of precedence in a single expression with deep nesting of sub-expressions.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating.
In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length, no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.
The digits of some specific integers permute or shift cyclically when they are multiplied by a number n. Examples are:
In mathematics, the radical symbol, radical sign, root symbol, radix, or surd is a symbol for the square root or higher-order root of a number. The square root of a number x is written as