Pentomino

Last updated
The 12 pentominoes can form 18 different shapes, with 6 of them (the chiral pentominoes) being mirrored. All 18 Pentominoes.svg
The 12 pentominoes can form 18 different shapes, with 6 of them (the chiral pentominoes) being mirrored.

Derived from the Greek word for '5', and "domino", a pentomino (or 5-omino) is a polyomino of order 5; that is, a polygon in the plane made of 5 equal-sized squares connected edge to edge. When rotations and reflections are not considered to be distinct shapes, there are 12 different free pentominoes. When reflections are considered distinct, there are 18 one-sided pentominoes. When rotations are also considered distinct, there are 63 fixed pentominoes.

Contents

Pentomino tiling puzzles and games are popular in recreational mathematics. [1] Usually, video games such as Tetris imitations and Rampart consider mirror reflections to be distinct, and thus use the full set of 18 one-sided pentominoes. (Tetris itself uses 4-square shapes.)

Each of the twelve pentominoes satisfies the Conway criterion; hence, every pentomino is capable of tiling the plane. [2] Each chiral pentomino can tile the plane without being reflected. [3]

History

Comparison of labeling schemes for the 12 possible pentomino shapes. The first naming convention is the one used in this article. The second method is Conway's. Pentomino Naming Conventions.svg
Comparison of labeling schemes for the 12 possible pentomino shapes. The first naming convention is the one used in this article. The second method is Conway's.

The earliest puzzle containing a complete set of pentominoes appeared in Henry Dudeney's book, The Canterbury Puzzles, published in 1907. [4] The earliest tilings of rectangles with a complete set of pentominoes appeared in the Problemist Fairy Chess Supplement in 1935, and further tiling problems were explored in the PFCS, and its successor, the Fairy Chess Review. [5] [6] :127

Pentominoes were formally defined by American professor Solomon W. Golomb starting in 1953 and later in his 1965 book Polyominoes: Puzzles, Patterns, Problems, and Packings . [1] [7] They were introduced to the general public by Martin Gardner in his October 1965 Mathematical Games column in Scientific American. Golomb coined the term "pentomino" from the Ancient Greek πέντε / pénte, "five", and the -omino of domino, fancifully interpreting the "d-" of "domino" as if it were a form of the Greek prefix "di-" (two). Golomb named the 12 free pentominoes after letters of the Latin alphabet that they resemble, using the mnemonic FILiPiNo along with the end of the alphabet (TUVWXYZ). [8] :23

John Horton Conway proposed an alternate labeling scheme for pentominoes, using O instead of I, Q instead of L, R instead of F, and S instead of N. The resemblance to the letters is more strained, especially for the O pentomino, but this scheme has the advantage of using 12 consecutive letters of the alphabet. It is used by convention in discussing Conway's Game of Life, where, for example, one speaks of the R-pentomino instead of the F-pentomino.

Symmetry

The F, L, N, P, Y, and Z pentominoes are chiral; adding their reflections (F′, J, N′, Q, Y′, S) brings the number of one-sided pentominoes to 18. If rotations are also considered distinct, then the pentominoes from the first category count eightfold, the ones from the next three categories (T, U, V, W, Z) count fourfold, I counts twice, and X counts only once. This results in 5×8 + 5×4 + 2 + 1 = 63 fixed pentominoes.

The eight possible orientations of the F, L, N, P, and Y pentominoes, and the four possible orientations of the T, U, V, W, and Z pentominoes are illustrated:

For 2D figures in general there are two more categories:

Games

Tiling puzzle (2D)

Example tilings Pentomino Puzzle Solutions.svg
Example tilings

A standard pentomino puzzle is to tile a rectangular box with the pentominoes, i.e. cover it without overlap and without gaps. Each of the 12 pentominoes has an area of 5 unit squares, so the box must have an area of 60 units. Possible sizes are 6×10, 5×12, 4×15 and 3×20.

The 6×10 case was first solved in 1960 by Colin Brian Haselgrove and Jenifer Haselgrove. [9] There are exactly 2339 solutions, excluding trivial variations obtained by rotation and reflection of the whole rectangle, but including rotation and reflection of a subset of pentominoes (which sometimes provides an additional solution in a simple way). The 5×12 box has 1010 solutions, the 4×15 box has 368 solutions, and the 3×20 box has just 2 solutions (one is shown in the figure, and the other one can be obtained from the solution shown by rotating, as a whole, the block consisting of the L, N, F, T, W, Y, and Z pentominoes).

A somewhat easier (more symmetrical) puzzle, the 8×8 rectangle with a 2×2 hole in the center, was solved by Dana Scott as far back as 1958. [10] There are 65 solutions. Scott's algorithm was one of the first applications of a backtracking computer program. Variations of this puzzle allow the four holes to be placed in any position. One of the external links uses this rule.

Efficient algorithms have been described to solve such problems, for instance by Donald Knuth. [11] Running on modern hardware, these pentomino puzzles can now be solved in mere seconds.

Unsolvable patterns Pentomino unsolvable.svg
Unsolvable patterns

Most such patterns are solvable, with the exceptions of placing each pair of holes near two corners of the board in such a way that both corners could only be fitted by a P-pentomino, or forcing a T-pentomino or U-pentomino in a corner such that another hole is created.

The pentomino set is the only free polyomino set that can be packed into a rectangle, with the exception of the trivial monomino and domino sets, each of which consists only of a single rectangle.

Box filling puzzle (3D)

Sample solutions to pentacube puzzles of the stated dimensions, drawn one layer at a time. Pentomino Cube Solutions.svg
Sample solutions to pentacube puzzles of the stated dimensions, drawn one layer at a time.

A pentacube is a polycube of five cubes. Of the 29 pentacubes, exactly twelve pentacubes are flat (1-layer) and correspond to the twelve pentominoes extruded to a depth of one square.

A pentacube puzzle or 3D pentomino puzzle, amounts to filling a 3-dimensional box with the 12 flat pentacubes, i.e. cover it without overlap and without gaps. Since each pentacube has a volume of 5 unit cubes, the box must have a volume of 60 units. Possible sizes are 2×3×10 (12 solutions), 2×5×6 (264 solutions) and 3×4×5 (3940 solutions). [12]

Alternatively one could also consider combinations of five cubes that are themselves 3D, i.e., those which include more than just the 12 "flat" single-layer thick combinations of cubes. However, in addition to the 12 "flat" pentacubes formed by extruding the pentominoes, there are 6 sets of chiral pairs and 5 additional pieces, forming a total of 29 potential pentacube pieces, which gives 145 cubes in total (=29×5); as 145 can only be packed into a box measuring 29×5×1, it cannot be formed by including the non-flat pentominoes.

Commercial board games

There are board games of skill based entirely on pentominoes. Such games are often simply called "Pentominoes".

One of the games is played on an 8×8 grid by two or three players. Players take turns in placing pentominoes on the board so that they do not overlap with existing tiles and no tile is used more than once. The objective is to be the last player to place a tile on the board. This version of Pentominoes is called "Golomb's Game". [13]

The two-player version has been weakly solved in 1996 by Hilarie Orman. It was proved to be a first-player win by examining around 22 billion board positions. [14]

Pentominoes, and similar shapes, are also the basis of a number of other tiling games, patterns and puzzles. For example, the French board game Blokus is played with 4 colored sets of polyominoes, each consisting of every pentomino (12), tetromino (5), triomino (2) domino (1) and monomino (1). Like the game Pentominoes, the goal is to use all of your tiles, and a bonus is given if the monomino is played on the last move. The player with the fewest blocks remaining wins.

The game of Cathedral is also based on polyominoes. [15]

Parker Brothers released a multi-player pentomino board game called Universe in 1966. Its theme is based on a deleted scene from the 1968 film 2001: A Space Odyssey in which an astronaut is playing a two-player pentomino game against the HAL 9000 computer (a scene with a different astronaut playing chess was retained). The front of the board game box features scenes from the movie as well as a caption describing it as the "game of the future". The game comes with four sets of pentominoes in red, yellow, blue, and white. The board has two playable areas: a base 10x10 area for two players with an additional 25 squares (two more rows of 10 and one offset row of five) on each side for more than two players.

Game manufacturer Lonpos has a number of games that use the same pentominoes, but on different game planes. Their 101 Game has a 5 x 11 plane. By changing the shape of the plane, thousands of puzzles can be played, although only a relatively small selection of these puzzles are available in print.

Video games

Literature

Pentominoes were featured in a prominent subplot of Arthur C. Clarke's 1975 novel Imperial Earth . Clarke also wrote an essay in which he described the game and how he got hooked on it. [16]

They were also featured in Blue Balliett's Chasing Vermeer , which was published in 2003 and illustrated by Brett Helquist, as well as its sequels, The Wright 3 and The Calder Game . [17]

In The New York Times crossword puzzle for June 27, 2012, the clue for an 11-letter word at 37 across was "Complete set of 12 shapes formed by this puzzle's black squares." [18]

See also

Previous and Next orders

Others

Notes

  1. 1 2 "Eric Harshbarger - Pentominoes".
  2. Rhoads, Glenn C. (2003). Planar Tilings and the Search for an Aperiodic Prototile. PhD dissertation, Rutgers University.
  3. Gardner, Martin (August 1975). "More about tiling the plane: the possibilities of polyominoes, polyiamonds and polyhexes". Scientific American . 233 (2): 112–115. doi:10.1038/scientificamerican0775-112.
  4. "The Project Gutenberg eBook of The Canterbury Puzzles, by Henry Ernest Dudeney". www.gutenberg.org. Retrieved 2022-03-26.
  5. "Dissection Problems in PFCS/FCR: Summary of Results in Date Order". www.mayhematics.com. Retrieved 2022-03-26.
  6. Gardner, Martin (1988). "13: Polyominoes". Hexaflexagons and other mathematical diversions. The University of Chicago Press. pp. 124–140. ISBN   0-226-28254-6.
  7. "people.rit.edu - Introduction - polyomino and pentomino".
  8. Golomb, Solomon W.; Lushbaugh, Warren (1965). Polyominoes. New York: Charles Scribner's Sons. LCCN   64-24805.
  9. C. B. Haselgrove; Jenifer Haselgrove (October 1960). "A Computer Program for Pentominoes" (PDF). Eureka . 23: 16–18.
  10. Dana S. Scott (1958). "Programming a combinatorial puzzle". Technical Report No. 1, Department of Electrical Engineering, Princeton University.
  11. Donald E. Knuth. "Dancing links" (Postscript, 1.6 megabytes). Includes a summary of Scott's and Fletcher's articles.
  12. Barequet, Gill; Tal, Shahar (2010). "Solving General Lattice Puzzles". In Lee, Der-Tsai; Chen, Danny Z.; Ying, Shi (eds.). Frontiers in Algorithmics . Lecture Notes in Computer Science. Vol. 6213. Berlin Heidelberg: Springer Science+Business Media. pp.  124–135. doi:10.1007/978-3-642-14553-7_14. ISBN   978-3-642-14552-0.
  13. Pritchard (1982), p. 83.
  14. Hilarie K. Orman. Pentominoes: A First Player Win (Pdf).
  15. "FAQ".
  16. Could you solve Pentominoes? by Arthur C. Clarke, Sunday Telegraph Magazine, September 14, 1975; reprinted in Clarke's Ascent to Orbit: A Scientific Autobiography, New York: John Wiley & Sons, 1984. ISBN   047187910X
  17. Chasing Vermeer, by Blue Balliett, Scholastic Paperbacks, ISBN   0439372976
  18. Buckley, Mike (June 27, 2012). Shortz, Will (ed.). "The Crossword". New York Times. Retrieved 30 July 2020.

Related Research Articles

<span class="mw-page-title-main">Tetromino</span> Four squares connected edge-to-edge

A tetromino is a geometric shape composed of four squares, connected orthogonally. Tetrominoes, like dominoes and pentominoes, are a particular type of polyomino. The corresponding polycube, called a tetracube, is a geometric shape composed of four cubes connected orthogonally.

<span class="mw-page-title-main">Soma cube</span> Solid-dissection puzzle

The Soma cube is a solid dissection puzzle invented by Danish polymath Piet Hein in 1933 during a lecture on quantum mechanics conducted by Werner Heisenberg.

<span class="mw-page-title-main">Polyomino</span> Geometric shapes formed from squares

A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling.

A polyiamond is a polyform whose base form is an equilateral triangle. The word polyiamond is a back-formation from diamond, because this word is often used to describe the shape of a pair of equilateral triangles placed base to base, and the initial 'di-' looks like a Greek prefix meaning 'two-'. The name was suggested by recreational mathematics writer Thomas H. O'Beirne in New Scientist 1961 number 1, page 164.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

<span class="mw-page-title-main">Hexomino</span> Geometric shape formed from six squares

A hexomino is a polyomino of order 6; that is, a polygon in the plane made of 6 equal-sized squares connected edge to edge. The name of this type of figure is formed with the prefix hex(a)-. When rotations and reflections are not considered to be distinct shapes, there are 35 different free hexominoes. When reflections are considered distinct, there are 60 one-sided hexominoes. When rotations are also considered distinct, there are 216 fixed hexominoes.

<span class="mw-page-title-main">Polyabolo</span> Shape formed from isosceles right triangles

In recreational mathematics, a polyabolo is a shape formed by gluing isosceles right triangles edge-to-edge, making a polyform with the isosceles right triangle as the base form. Polyaboloes were introduced by Martin Gardner in his June 1967 "Mathematical Games column" in Scientific American.

<span class="mw-page-title-main">Polyhex (mathematics)</span> Polyform with a regular hexagon as the base form

In recreational mathematics, a polyhex is a polyform with a regular hexagon as the base form, constructed by joining together 1 or more hexagons. Specific forms are named by their number of hexagons: monohex, dihex, trihex, tetrahex, etc. They were named by David Klarner who investigated them.

<span class="mw-page-title-main">Polycube</span> Shape made from cubes joined together

A polycube is a solid figure formed by joining one or more equal cubes face to face. Polycubes are the three-dimensional analogues of the planar polyominoes. The Soma cube, the Bedlam cube, the Diabolical cube, the Slothouber–Graatsma puzzle, and the Conway puzzle are examples of packing problems based on polycubes.

<span class="mw-page-title-main">Tromino</span> Geometric shape formed from three squares

A tromino or triomino is a polyomino of size 3, that is, a polygon in the plane made of three equal-sized squares connected edge-to-edge.

<span class="mw-page-title-main">Solomon W. Golomb</span> American mathematician (1932–2016)

Solomon Wolf Golomb was an American mathematician, engineer, and professor of electrical engineering at the University of Southern California, best known for his works on mathematical games. Most notably, he invented Cheskers in 1948. He also fully described polyominoes and pentominoes in 1953. He specialized in problems of combinatorial analysis, number theory, coding theory, and communications. Pentomino boardgames, based on his work, would go on to inspire Tetris.

<span class="mw-page-title-main">Heptomino</span> Geometric shape formed from seven squares

A heptomino is a polyomino of order 7; that is, a polygon in the plane made of 7 equal-sized squares connected edge to edge. The name of this type of figure is formed with the prefix hept(a)-. When rotations and reflections are not considered to be distinct shapes, there are 108 different free heptominoes. When reflections are considered distinct, there are 196 one-sided heptominoes. When rotations are also considered distinct, there are 760 fixed heptominoes.

<span class="mw-page-title-main">Nonomino</span> Geometric shape formed from nine squares

A nonomino is a polyomino of order 9; that is, a polygon in the plane made of 9 equal-sized squares connected edge to edge. The name of this type of figure is formed with the prefix non(a)-. When rotations and reflections are not considered to be distinct shapes, there are 1,285 different free nonominoes. When reflections are considered distinct, there are 2,500 one-sided nonominoes. When rotations are also considered distinct, there are 9,910 fixed nonominoes.

<span class="mw-page-title-main">LITS</span> Logic puzzle

LITS, formerly known as Nuruomino (ヌルオミノ), is a binary determination puzzle published by Nikoli.

<span class="mw-page-title-main">Glossary of Sudoku</span>

This is a glossary of Sudoku terms and jargon. It is organized thematically, with links to references and example usage provided as ([1]). Sudoku with a 9×9 grid is assumed, unless otherwise noted.

<span class="mw-page-title-main">Octomino</span> Geometric shape formed from eight squares

An octomino is a polyomino of order 8; that is, a polygon in the plane made of 8 equal-sized squares connected edge to edge. When rotations and reflections are not considered to be distinct shapes, there are 369 different free octominoes. When reflections are considered distinct, there are 704 one-sided octominoes. When rotations are also considered distinct, there are 2,725 fixed octominoes.

<span class="mw-page-title-main">Edge-matching puzzle</span>

An edge-matching puzzle is a type of tiling puzzle involving tiling an area with polygons whose edges are distinguished with colours or patterns, in such a way that the edges of adjacent tiles match.

In mathematics, a domino is a polyomino of order 2, that is, a polygon in the plane made of two equal-sized squares connected edge-to-edge. When rotations and reflections are not considered to be distinct shapes, there is only one free domino.

A decomino, or 10-omino, is a polyomino of order 10; that is, a polygon in the plane made of 10 equal-sized squares connected edge to edge. When rotations and reflections are not considered to be distinct shapes, there are 4,655 different free decominoes. When reflections are considered distinct, there are 9,189 one-sided decominoes. When rotations are also considered distinct, there are 36,446 fixed decominoes.

Polyominoes: Puzzles, Patterns, Problems, and Packings is a mathematics book on polyominoes, the shapes formed by connecting some number of unit squares edge-to-edge. It was written by Solomon Golomb, and is "universally regarded as a classic in recreational mathematics". The Basic Library List Committee of the Mathematical Association of America has strongly recommended its inclusion in undergraduate mathematics libraries.

References