Lucas sequence Last updated December 13, 2025 Certain constant-recursive integer sequences
Not to be confused with the sequence of
Lucas numbers , which is a particular Lucas sequence.
In mathematics , the Lucas sequences U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) {\displaystyle V_{n}(P,Q)} are certain constant-recursive integer sequences that satisfy the recurrence relation
x n = P ⋅ x n − 1 − Q ⋅ x n − 2 {\displaystyle x_{n}=P\cdot x_{n-1}-Q\cdot x_{n-2}} where P {\displaystyle P} and Q {\displaystyle Q} are fixed integers . Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) . {\displaystyle V_{n}(P,Q).}
More generally, Lucas sequences U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) {\displaystyle V_{n}(P,Q)} represent sequences of polynomials in P {\displaystyle P} and Q {\displaystyle Q} with integer coefficients .
Famous examples of Lucas sequences include the Fibonacci numbers , Mersenne numbers , Pell numbers , Lucas numbers , Jacobsthal numbers , and a superset of Fermat numbers (see below). Lucas sequences are named after the French mathematician Édouard Lucas .
Recurrence relations Given two integer parameters P {\displaystyle P} and Q {\displaystyle Q} , the Lucas sequences of the first kind U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and of the second kind V n ( P , Q ) {\displaystyle V_{n}(P,Q)} are defined by the recurrence relations :
U 0 ( P , Q ) = 0 , U 1 ( P , Q ) = 1 , U n ( P , Q ) = P ⋅ U n − 1 ( P , Q ) − Q ⋅ U n − 2 ( P , Q ) for n > 1 , {\displaystyle {\begin{aligned}U_{0}(P,Q)&=0,\\U_{1}(P,Q)&=1,\\U_{n}(P,Q)&=P\cdot U_{n-1}(P,Q)-Q\cdot U_{n-2}(P,Q){\mbox{ for }}n>1,\end{aligned}}} and
V 0 ( P , Q ) = 2 , V 1 ( P , Q ) = P , V n ( P , Q ) = P ⋅ V n − 1 ( P , Q ) − Q ⋅ V n − 2 ( P , Q ) for n > 1. {\displaystyle {\begin{aligned}V_{0}(P,Q)&=2,\\V_{1}(P,Q)&=P,\\V_{n}(P,Q)&=P\cdot V_{n-1}(P,Q)-Q\cdot V_{n-2}(P,Q){\mbox{ for }}n>1.\end{aligned}}} It is not hard to show that for n > 0 {\displaystyle n>0} ,
U n ( P , Q ) = P ⋅ U n − 1 ( P , Q ) + V n − 1 ( P , Q ) 2 , V n ( P , Q ) = ( P 2 − 4 Q ) ⋅ U n − 1 ( P , Q ) + P ⋅ V n − 1 ( P , Q ) 2 . {\displaystyle {\begin{aligned}U_{n}(P,Q)&={\frac {P\cdot U_{n-1}(P,Q)+V_{n-1}(P,Q)}{2}},\\V_{n}(P,Q)&={\frac {(P^{2}-4Q)\cdot U_{n-1}(P,Q)+P\cdot V_{n-1}(P,Q)}{2}}.\end{aligned}}} The above relations can be stated in matrix form as follows:
[ U n ( P , Q ) U n + 1 ( P , Q ) ] = [ 0 1 − Q P ] ⋅ [ U n − 1 ( P , Q ) U n ( P , Q ) ] , {\displaystyle {\begin{bmatrix}U_{n}(P,Q)\\U_{n+1}(P,Q)\end{bmatrix}}={\begin{bmatrix}0&1\\-Q&P\end{bmatrix}}\cdot {\begin{bmatrix}U_{n-1}(P,Q)\\U_{n}(P,Q)\end{bmatrix}},}
[ V n ( P , Q ) V n + 1 ( P , Q ) ] = [ 0 1 − Q P ] ⋅ [ V n − 1 ( P , Q ) V n ( P , Q ) ] , {\displaystyle {\begin{bmatrix}V_{n}(P,Q)\\V_{n+1}(P,Q)\end{bmatrix}}={\begin{bmatrix}0&1\\-Q&P\end{bmatrix}}\cdot {\begin{bmatrix}V_{n-1}(P,Q)\\V_{n}(P,Q)\end{bmatrix}},}
[ U n ( P , Q ) V n ( P , Q ) ] = [ P / 2 1 / 2 ( P 2 − 4 Q ) / 2 P / 2 ] ⋅ [ U n − 1 ( P , Q ) V n − 1 ( P , Q ) ] . {\displaystyle {\begin{bmatrix}U_{n}(P,Q)\\V_{n}(P,Q)\end{bmatrix}}={\begin{bmatrix}P/2&1/2\\(P^{2}-4Q)/2&P/2\end{bmatrix}}\cdot {\begin{bmatrix}U_{n-1}(P,Q)\\V_{n-1}(P,Q)\end{bmatrix}}.} Initial terms of Lucas sequences U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) {\displaystyle V_{n}(P,Q)} are given in the table:
n U n ( P , Q ) V n ( P , Q ) 0 0 2 1 1 P 2 P P 2 − 2 Q 3 P 2 − Q P 3 − 3 P Q 4 P 3 − 2 P Q P 4 − 4 P 2 Q + 2 Q 2 5 P 4 − 3 P 2 Q + Q 2 P 5 − 5 P 3 Q + 5 P Q 2 6 P 5 − 4 P 3 Q + 3 P Q 2 P 6 − 6 P 4 Q + 9 P 2 Q 2 − 2 Q 3 {\displaystyle {\begin{array}{r|l|l}n&U_{n}(P,Q)&V_{n}(P,Q)\\\hline 0&0&2\\1&1&P\\2&P&{P}^{2}-2Q\\3&{P}^{2}-Q&{P}^{3}-3PQ\\4&{P}^{3}-2PQ&{P}^{4}-4{P}^{2}Q+2{Q}^{2}\\5&{P}^{4}-3{P}^{2}Q+{Q}^{2}&{P}^{5}-5{P}^{3}Q+5P{Q}^{2}\\6&{P}^{5}-4{P}^{3}Q+3P{Q}^{2}&{P}^{6}-6{P}^{4}Q+9{P}^{2}{Q}^{2}-2{Q}^{3}\end{array}}} Explicit expressions The characteristic equation of the recurrence relation for Lucas sequences U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) {\displaystyle V_{n}(P,Q)} is:
x 2 − P x + Q = 0 {\displaystyle x^{2}-Px+Q=0\,} It has the discriminant D = P 2 − 4 Q {\displaystyle D=P^{2}-4Q} and, by the quadratic formula , has the roots :
a = P + D 2 and b = P − D 2 . {\displaystyle a={\frac {P+{\sqrt {D}}}{2}}\quad {\text{and}}\quad b={\frac {P-{\sqrt {D}}}{2}}.\,} Thus:
a + b = P , {\displaystyle a+b=P\,,} a b = 1 4 ( P 2 − D ) = Q , {\displaystyle ab={\frac {1}{4}}(P^{2}-D)=Q\,,} a − b = D . {\displaystyle a-b={\sqrt {D}}\,.} Note that the sequence a n {\displaystyle a^{n}} and the sequence b n {\displaystyle b^{n}} also satisfy the recurrence relation. However these might not be integer sequences.
Repeated root The case D = 0 {\displaystyle D=0} occurs exactly when P = 2 S and Q = S 2 {\displaystyle P=2S{\text{ and }}Q=S^{2}} for some integer S so that a = b = S {\displaystyle a=b=S} . In this case one easily finds that
U n ( P , Q ) = U n ( 2 S , S 2 ) = n S n − 1 {\displaystyle U_{n}(P,Q)=U_{n}(2S,S^{2})=nS^{n-1}\,} V n ( P , Q ) = V n ( 2 S , S 2 ) = 2 S n . {\displaystyle V_{n}(P,Q)=V_{n}(2S,S^{2})=2S^{n}.\,} Properties Generating functions The ordinary generating functions are
∑ n ≥ 0 U n ( P , Q ) z n = z 1 − P z + Q z 2 ; {\displaystyle \sum _{n\geq 0}U_{n}(P,Q)z^{n}={\frac {z}{1-Pz+Qz^{2}}};} ∑ n ≥ 0 V n ( P , Q ) z n = 2 − P z 1 − P z + Q z 2 . {\displaystyle \sum _{n\geq 0}V_{n}(P,Q)z^{n}={\frac {2-Pz}{1-Pz+Qz^{2}}}.} Pell equations When Q = ± 1 {\displaystyle Q=\pm 1} , the Lucas sequences U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) {\displaystyle V_{n}(P,Q)} satisfy certain Pell equations :
V n ( P , 1 ) 2 − D ⋅ U n ( P , 1 ) 2 = 4 , {\displaystyle V_{n}(P,1)^{2}-D\cdot U_{n}(P,1)^{2}=4,} V n ( P , − 1 ) 2 − D ⋅ U n ( P , − 1 ) 2 = 4 ( − 1 ) n . {\displaystyle V_{n}(P,-1)^{2}-D\cdot U_{n}(P,-1)^{2}=4(-1)^{n}.} Relations between sequences with different parameters For any number c , the sequences U n ( P ′ , Q ′ ) {\displaystyle U_{n}(P',Q')} and V n ( P ′ , Q ′ ) {\displaystyle V_{n}(P',Q')} with P ′ = P + 2 c {\displaystyle P'=P+2c} Q ′ = c P + Q + c 2 {\displaystyle Q'=cP+Q+c^{2}} have the same discriminant as U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) {\displaystyle V_{n}(P,Q)} : P ′ 2 − 4 Q ′ = ( P + 2 c ) 2 − 4 ( c P + Q + c 2 ) = P 2 − 4 Q = D . {\displaystyle P'^{2}-4Q'=(P+2c)^{2}-4(cP+Q+c^{2})=P^{2}-4Q=D.} For any number c , we also have U n ( c P , c 2 Q ) = c n − 1 ⋅ U n ( P , Q ) , {\displaystyle U_{n}(cP,c^{2}Q)=c^{n-1}\cdot U_{n}(P,Q),} V n ( c P , c 2 Q ) = c n ⋅ V n ( P , Q ) . {\displaystyle V_{n}(cP,c^{2}Q)=c^{n}\cdot V_{n}(P,Q).} Other relations The terms of Lucas sequences satisfy relations that are generalizations of those between Fibonacci numbers F n = U n ( 1 , − 1 ) {\displaystyle F_{n}=U_{n}(1,-1)} and Lucas numbers L n = V n ( 1 , − 1 ) {\displaystyle L_{n}=V_{n}(1,-1)} . For example:
General case ( P , Q ) = ( 1 , − 1 ) , D = P 2 − 4 Q = 5 D U n = V n + 1 − Q V n − 1 = 2 V n + 1 − P V n 5 F n = L n + 1 + L n − 1 = 2 L n + 1 − L n ( 1 ) V n = U n + 1 − Q U n − 1 = 2 U n + 1 − P U n L n = F n + 1 + F n − 1 = 2 F n + 1 − F n ( 2 ) U m + n = U n U m + 1 − Q U m U n − 1 = U m V n − Q n U m − n F m + n = F n F m + 1 + F m F n − 1 = F m L n − ( − 1 ) n F m − n ( 3 ) U 2 n = U n ( U n + 1 − Q U n − 1 ) = U n V n F 2 n = F n ( F n + 1 + F n − 1 ) = F n L n ( 4 ) U 2 n + 1 = U n + 1 2 − Q U n 2 F 2 n + 1 = F n + 1 2 + F n 2 ( 5 ) V m + n = V m V n − Q n V m − n = D U m U n + Q n V m − n L m + n = L m L n − ( − 1 ) n L m − n = 5 F m F n + ( − 1 ) n L m − n ( 6 ) V 2 n = V n 2 − 2 Q n = D U n 2 + 2 Q n L 2 n = L n 2 − 2 ( − 1 ) n = 5 F n 2 + 2 ( − 1 ) n ( 7 ) U m + n = U m V n + U n V m 2 F m + n = F m L n + F n L m 2 ( 8 ) V m + n = V m V n + D U m U n 2 L m + n = L m L n + 5 F m F n 2 ( 9 ) V n 2 − D U n 2 = 4 Q n L n 2 − 5 F n 2 = 4 ( − 1 ) n ( 10 ) U n 2 − U n − 1 U n + 1 = Q n − 1 F n 2 − F n − 1 F n + 1 = ( − 1 ) n − 1 ( 11 ) V n 2 − V n − 1 V n + 1 = D Q n − 1 L n 2 − L n − 1 L n + 1 = 5 ( − 1 ) n − 1 ( 12 ) 2 n − 1 U n = ( n 1 ) P n − 1 + ( n 3 ) P n − 3 D + ⋯ 2 n − 1 F n = ( n 1 ) + 5 ( n 3 ) + ⋯ ( 13 ) 2 n − 1 V n = P n + ( n 2 ) P n − 2 D + ( n 4 ) P n − 4 D 2 + ⋯ 2 n − 1 L n = 1 + 5 ( n 2 ) + 5 2 ( n 4 ) + ⋯ ( 14 ) {\displaystyle {\begin{array}{l|l|r}{\text{General case}}&(P,Q)=(1,-1),D=P^{2}-4Q=5\\\hline DU_{n}={V_{n+1}-QV_{n-1}}=2V_{n+1}-PV_{n}&5F_{n}={L_{n+1}+L_{n-1}}=2L_{n+1}-L_{n}&(1)\\V_{n}=U_{n+1}-QU_{n-1}=2U_{n+1}-PU_{n}&L_{n}=F_{n+1}+F_{n-1}=2F_{n+1}-F_{n}&(2)\\U_{m+n}=U_{n}U_{m+1}-QU_{m}U_{n-1}=U_{m}V_{n}-Q^{n}U_{m-n}&F_{m+n}=F_{n}F_{m+1}+F_{m}F_{n-1}=F_{m}L_{n}-(-1)^{n}F_{m-n}&(3)\\U_{2n}=U_{n}(U_{n+1}-QU_{n-1})=U_{n}V_{n}&F_{2n}=F_{n}(F_{n+1}+F_{n-1})=F_{n}L_{n}&(4)\\U_{2n+1}=U_{n+1}^{2}-QU_{n}^{2}&F_{2n+1}=F_{n+1}^{2}+F_{n}^{2}&(5)\\V_{m+n}=V_{m}V_{n}-Q^{n}V_{m-n}=DU_{m}U_{n}+Q^{n}V_{m-n}&L_{m+n}=L_{m}L_{n}-(-1)^{n}L_{m-n}=5F_{m}F_{n}+(-1)^{n}L_{m-n}&(6)\\V_{2n}=V_{n}^{2}-2Q^{n}=DU_{n}^{2}+2Q^{n}&L_{2n}=L_{n}^{2}-2(-1)^{n}=5F_{n}^{2}+2(-1)^{n}&(7)\\U_{m+n}={\frac {U_{m}V_{n}+U_{n}V_{m}}{2}}&F_{m+n}={\frac {F_{m}L_{n}+F_{n}L_{m}}{2}}&(8)\\V_{m+n}={\frac {V_{m}V_{n}+DU_{m}U_{n}}{2}}&L_{m+n}={\frac {L_{m}L_{n}+5F_{m}F_{n}}{2}}&(9)\\V_{n}^{2}-DU_{n}^{2}=4Q^{n}&L_{n}^{2}-5F_{n}^{2}=4(-1)^{n}&(10)\\U_{n}^{2}-U_{n-1}U_{n+1}=Q^{n-1}&F_{n}^{2}-F_{n-1}F_{n+1}=(-1)^{n-1}&(11)\\V_{n}^{2}-V_{n-1}V_{n+1}=DQ^{n-1}&L_{n}^{2}-L_{n-1}L_{n+1}=5(-1)^{n-1}&(12)\\2^{n-1}U_{n}={n \choose 1}P^{n-1}+{n \choose 3}P^{n-3}D+\cdots &2^{n-1}F_{n}={n \choose 1}+5{n \choose 3}+\cdots &(13)\\2^{n-1}V_{n}=P^{n}+{n \choose 2}P^{n-2}D+{n \choose 4}P^{n-4}D^{2}+\cdots &2^{n-1}L_{n}=1+5{n \choose 2}+5^{2}{n \choose 4}+\cdots &(14)\end{array}}} Of these, (6) and (7) allow fast calculation of V independent of U in a way analogous to exponentiation by squaring . The relation V m n = V m ( P = V n , Q = Q n ) {\displaystyle V_{mn}=V_{m}(P=V_{n},Q=Q_{n})} (which belongs to the section above, "relations between sequences with different parameters") is also useful for this purpose. [ 1]
Fast computation An analog of exponentiation by squaring applied to the matrix that calculates U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) {\displaystyle V_{n}(P,Q)} from U n − 1 ( P , Q ) {\displaystyle U_{n-1}(P,Q)} and V n − 1 ( P , Q ) {\displaystyle V_{n-1}(P,Q)} allows O ( log n ) {\displaystyle {\mathcal {O}}(\log n)} -time computation of U n ( P , Q ) {\displaystyle U_{n}(P,Q)} and V n ( P , Q ) {\displaystyle V_{n}(P,Q)} for large values of n .
Divisibility properties Among the consequences is that U k m ( P , Q ) {\displaystyle U_{km}(P,Q)} is a multiple of U m ( P , Q ) {\displaystyle U_{m}(P,Q)} , i.e., the sequence ( U m ( P , Q ) ) m ≥ 1 {\displaystyle (U_{m}(P,Q))_{m\geq 1}} is a divisibility sequence . This implies, in particular, that U n ( P , Q ) {\displaystyle U_{n}(P,Q)} can be prime only when n is prime. Moreover, if gcd ( P , Q ) = 1 {\displaystyle \gcd(P,Q)=1} , then ( U m ( P , Q ) ) m ≥ 1 {\displaystyle (U_{m}(P,Q))_{m\geq 1}} is a strong divisibility sequence .
Other divisibility properties are as follows: [ 2]
If n is an odd multiple of m , then V m {\displaystyle V_{m}} divides V n {\displaystyle V_{n}} . Let N be an integer relatively prime to 2Q . If the smallest positive integer r for which N divides U r {\displaystyle U_{r}} exists, then the set of n for which N divides U n {\displaystyle U_{n}} is exactly the set of multiples of r . If P and Q are even , then U n , V n {\displaystyle U_{n},V_{n}} are always even except U 1 {\displaystyle U_{1}} . If P is odd and Q is even, then U n , V n {\displaystyle U_{n},V_{n}} are always odd for every n > 0 {\displaystyle n>0} . If P is even and Q is odd, then the parity of U n {\displaystyle U_{n}} is the same as n and V n {\displaystyle V_{n}} is always even. If P and Q are odd, then U n , V n {\displaystyle U_{n},V_{n}} are even if and only if n is a multiple of 3. If p is an odd prime, then U p ≡ ( D p ) , V p ≡ P ( mod p ) {\displaystyle U_{p}\equiv \left({\tfrac {D}{p}}\right),V_{p}\equiv P{\pmod {p}}} (see Legendre symbol ). If p is an odd prime which divides P and Q , then p divides U n {\displaystyle U_{n}} for every n > 1 {\displaystyle n>1} . If p is an odd prime which divides P but not Q , then p divides U n {\displaystyle U_{n}} if and only if n is even. If p is an odd prime which divides Q but not P , then p never divides U n {\displaystyle U_{n}} for any n > 0 {\displaystyle n>0} . If p is an odd prime which divides D but not PQ , then p divides U n {\displaystyle U_{n}} if and only if p divides n . If p is an odd prime which does not divide PQD , then p divides U l {\displaystyle U_{l}} , where l = p − ( D p ) {\displaystyle l=p-\left({\tfrac {D}{p}}\right)} . The last fact generalizes Fermat's little theorem . These facts are used in the Lucas–Lehmer primality test . Like Fermat's little theorem, the converse of the last fact holds often, but not always; there exist composite numbers n relatively prime to D and dividing U l {\displaystyle U_{l}} , where l = n − ( D n ) {\displaystyle l=n-\left({\tfrac {D}{n}}\right)} . Such composite numbers are called Lucas pseudoprimes .
A prime factor of a term in a Lucas sequence which does not divide any earlier term in the sequence is called primitive . Carmichael's theorem states that all but finitely many of the terms in a Lucas sequence have a primitive prime factor. [ 3] Indeed, Carmichael (1913) showed that if D is positive and n is not 1, 2 or 6, then U n {\displaystyle U_{n}} has a primitive prime factor. In the case D is negative, a deep result of Bilu, Hanrot, Voutier and Mignotte [ 4] shows that if n > 30, then U n {\displaystyle U_{n}} has a primitive prime factor and determines all cases U n {\displaystyle U_{n}} has no primitive prime factor.
Specific names The Lucas sequences for some values of P and Q have specific names:
Un (1, −1) : Fibonacci numbers Vn (1, −1) : Lucas numbers Un (2, −1) : Pell numbers Vn (2, −1) : Pell–Lucas numbers (companion Pell numbers)Un (2, 1) : Counting numbers Un (1, −2) : Jacobsthal numbers Vn (1, −2) : Jacobsthal–Lucas numbers Un (3, 2) : Mersenne numbers 2n − 1 Vn (3, 2) : Numbers of the form 2n + 1 , which include the Fermat numbers [ 3] Un (6, 1) : The square roots of the square triangular numbers .Un (x , −1) : Fibonacci polynomials Vn (x , −1) : Lucas polynomials Un (2x , 1) : Chebyshev polynomials of second kindVn (2x , 1) : Chebyshev polynomials of first kind multiplied by 2Un (x + 1, x ) : Repunits in base x Vn (x + 1, x ) : x n + 1Some Lucas sequences have entries in the On-Line Encyclopedia of Integer Sequences :
Applications Lucas sequences are used in probabilistic Lucas pseudoprime tests, which are part of the commonly used Baillie–PSW primality test . Lucas sequences are used in some primality proof methods, including the Lucas–Lehmer and Lucas–Lehmer–Riesel tests and the hybrid N−1/N+1 methods such as those in Brillhart-Lehmer-Selfridge 1975. [ 5] [ 6] LUC is a public-key cryptosystem based on Lucas sequences [ 7] that implements the analogs of ElGamal (LUCELG), Diffie–Hellman (LUCDIF), and RSA (LUCRSA). The encryption of the message in LUC is computed as a term of certain Lucas sequence, instead of using modular exponentiation as in RSA or Diffie–Hellman. However, it is argued [ 8] that many of the supposed security advantages of LUC over cryptosystems based on modular exponentiation are either not present, or not as substantial as claimed. Generalizations The sequence V n ( P , Q ) = a n + b n {\displaystyle V_{n}(P,Q)=a^{n}+b^{n}} , which is a solution to the recurrence V n ( P , Q ) = P V n − 1 ( P , Q ) − Q V n − 2 ( P , Q ) {\displaystyle V_{n}(P,Q)=PV_{n-1}(P,Q)-QV_{n-2}(P,Q)} when a {\displaystyle a} and b {\displaystyle b} are the roots of the corresponding quadratic equation z 2 − P z + Q = 0 {\displaystyle z^{2}-Pz+Q=0} , generalizes to degree k ≥ 1 {\displaystyle k\geq 1} . Specifically, for the recurrence relation V n ( P 1 , … , P k ) = ∑ j = 1 k P j V n − j ( P 1 , … , P k ) {\displaystyle V_{n}(P_{1},\ldots ,P_{k})=\sum _{j=1}^{k}P_{j}V_{n-j}(P_{1},\ldots ,P_{k})} with integers P 1 , … , P k {\displaystyle P_{1},\ldots ,P_{k}} and typically with P k ≠ 0 {\displaystyle P_{k}\neq 0} , let a 1 , … , a k {\displaystyle a_{1},\ldots ,a_{k}} be the roots of the corresponding polynomial equation z k − ∑ j = 1 k P j z k − j = 0. {\displaystyle z^{k}-\sum _{j=1}^{k}P_{j}z^{k-j}=0.} Then V n ( P 1 , … , P k ) = ∑ j = 1 k a j n {\displaystyle V_{n}(P_{1},\ldots ,P_{k})=\sum _{j=1}^{k}a_{j}^{n}} is a sequence of integers satisfying the recurrence, as is evidenced by its ordinary generating function , G P 1 , … , P k ( z ) = ∑ n = 0 ∞ V n ( P 1 , … , P k ) z n = k − ∑ j = 1 k − 1 ( k − j ) P j z j 1 − ∑ j = 1 k P j z j . {\displaystyle G_{P_{1},\ldots ,P_{k}}(z)=\sum _{n=0}^{\infty }V_{n}(P_{1},\ldots ,P_{k})z^{n}={\frac {k-\sum _{j=1}^{k-1}(k-j)P_{j}z^{j}}{1-\sum _{j=1}^{k}P_{j}z^{j}}}.}
Software SageMath implements U n {\displaystyle U_{n}} and V n {\displaystyle V_{n}} as functions lucas_number1() and lucas_number2(), respectively. [ 9] References Carmichael, R. D. (1913), "On the numerical factors of the arithmetic forms αn ±βn ", Annals of Mathematics , 15 (1/4): 30– 70, doi :10.2307/1967797 , JSTOR 1967797 Lehmer, D. H. (1930). "An extended theory of Lucas' functions". Annals of Mathematics . 31 (3): 419– 448. Bibcode :1930AnMat..31..419L . doi :10.2307/1968235 . JSTOR 1968235 . Ward, Morgan (1954). "Prime divisors of second order recurring sequences". Duke Math. J . 21 (4): 607– 614. doi :10.1215/S0012-7094-54-02163-8 . hdl : 10338.dmlcz/137477 . MR 0064073 . Somer, Lawrence (1980). "The divisibility properties of primary Lucas Recurrences with respect to primes" (PDF) . Fibonacci Quarterly . 18 (4): 316– 334. doi :10.1080/00150517.1980.12430140 . Lagarias, J. C. (1985). "The set of primes dividing Lucas Numbers has density 2/3". Pac. J. Math . 118 (2): 449– 461. CiteSeerX 10.1.1.174.660 . doi :10.2140/pjm.1985.118.449 . MR 0789184 . Hans Riesel (1994). Prime Numbers and Computer Methods for Factorization . Progress in Mathematics. Vol. 126 (2nd ed.). Birkhäuser. pp. 107– 121. ISBN 0-8176-3743-5 . Ribenboim, Paulo; McDaniel, Wayne L. (1996). "The square terms in Lucas Sequences" . J. Number Theory . 58 (1): 104– 123. doi : 10.1006/jnth.1996.0068 . Joye, M.; Quisquater, J.-J. (1996). "Efficient computation of full Lucas sequences" (PDF) . Electronics Letters . 32 (6): 537– 538. Bibcode :1996ElL....32..537J . doi :10.1049/el:19960359 . Archived from the original (PDF) on 2015-02-02. Ribenboim, Paulo (1996). The New Book of Prime Number Records (eBook ed.). Springer-Verlag , New York. doi :10.1007/978-1-4612-0759-7 . ISBN 978-1-4612-0759-7 . Ribenboim, Paulo (2000). My Numbers, My Friends: Popular Lectures on Number Theory . New York: Springer-Verlag . pp. 1– 50. ISBN 0-387-98911-0 . Luca, Florian (2000). "Perfect Fibonacci and Lucas numbers". Rend. Circ Matem. Palermo . 49 (2): 313– 318. doi :10.1007/BF02904236 . S2CID 121789033 . Yabuta, M. (2001). "A simple proof of Carmichael's theorem on primitive divisors" (PDF) . Fibonacci Quarterly . 39 (5): 439– 443. doi :10.1080/00150517.2001.12428701 . Benjamin, Arthur T. ; Quinn, Jennifer J. (2003). Proofs that Really Count: The Art of Combinatorial Proof . Dolciani Mathematical Expositions. Vol. 27. Mathematical Association of America . p. 35 . ISBN 978-0-88385-333-7 . Lucas sequence at Encyclopedia of Mathematics . Weisstein, Eric W. "Lucas Sequence" . MathWorld . Wei Dai . "Lucas Sequences in Cryptography" . This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.