Signed-digit representation

Last updated

In mathematical notation for numbers, a signed-digit representation is a positional numeral system with a set of signed digits used to encode the integers.

Contents

Signed-digit representation can be used to accomplish fast addition of integers because it can eliminate chains of dependent carries. [1] In the binary numeral system, a special case signed-digit representation is the non-adjacent form , which can offer speed benefits with minimal space overhead.

History

Challenges in calculation stimulated early authors Colson (1726) and Cauchy (1840) to use signed-digit representation. The further step of replacing negated digits with new ones was suggested by Selling (1887) and Cajori (1928).

In 1928, Florian Cajori noted the recurring theme of signed digits, starting with Colson (1726) and Cauchy (1840). [2] In his book History of Mathematical Notations, Cajori titled the section "Negative numerals". [3] For completeness, Colson [4] uses examples and describes addition (pp. 163–4), multiplication (pp. 165–6) and division (pp. 170–1) using a table of multiples of the divisor. He explains the convenience of approximation by truncation in multiplication. Colson also devised an instrument (Counting Table) that calculated using signed digits.

Eduard Selling [5] advocated inverting the digits 1, 2, 3, 4, and 5 to indicate the negative sign. He also suggested snie, jes, jerd, reff, and niff as names to use vocally. Most of the other early sources used a bar over a digit to indicate a negative sign for it. Another German usage of signed-digits was described in 1902 in Klein's encyclopedia. [6]

Definition and properties

Digit set

Let be a finite set of numerical digits with cardinality (If , then the positional number system is trivial and only represents the trivial ring), with each digit denoted as for is known as the radix or number base . can be used for a signed-digit representation if it's associated with a unique function such that for all This function, is what rigorously and formally establishes how integer values are assigned to the symbols/glyphs in One benefit of this formalism is that the definition of "the integers" (however they may be defined) is not conflated with any particular system for writing/representing them; in this way, these two distinct (albeit closely related) concepts are kept separate.

can be partitioned into three distinct sets , , and , representing the positive, zero, and negative digits respectively, such that all digits satisfy , all digits satisfy and all digits satisfy . The cardinality of is , the cardinality of is , and the cardinality of is , giving the number of positive and negative digits respectively, such that .

Balanced form representations

Balanced form representations are representations where for every positive digit , there exist a corresponding negative digit such that . It follows that . Only odd bases can have balanced form representations, as otherwise has to be the opposite of itself and hence 0, but . In balanced form, the negative digits are usually denoted as positive digits with a bar over the digit, as for . For example, the digit set of balanced ternary would be with , , and . This convention is adopted in finite fields of odd prime order : [7]

Dual signed-digit representation

Every digit set has a dual digit set given by the inverse order of the digits with an isomorphism defined by . As a result, for any signed-digit representations of a number system ring constructed from with valuation , there exists a dual signed-digit representations of , , constructed from with valuation , and an isomorphism defined by , where is the additive inverse operator of . The digit set for balanced form representations is self-dual.

For integers

Given the digit set and function as defined above, let us define an integer endofunction as the following:

If the only periodic point of is the fixed point , then the set of all signed-digit representations of the integers using is given by the Kleene plus , the set of all finite concatenated strings of digits with at least one digit, with . Each signed-digit representation has a valuation

.

Examples include balanced ternary with digits .

Otherwise, if there exist a non-zero periodic point of , then there exist integers that are represented by an infinite number of non-zero digits in . Examples include the standard decimal numeral system with the digit set , which requires an infinite number of the digit to represent the additive inverse , as , and the positional numeral system with the digit set with , which requires an infinite number of the digit to represent the number , as .

For decimal fractions

If the integers can be represented by the Kleene plus , then the set of all signed-digit representations of the decimal fractions, or -adic rationals , is given by , the Cartesian product of the Kleene plus , the set of all finite concatenated strings of digits with at least one digit, the singleton consisting of the radix point ( or ), and the Kleene star , the set of all finite concatenated strings of digits , with . Each signed-digit representation has a valuation

For real numbers

If the integers can be represented by the Kleene plus , then the set of all signed-digit representations of the real numbers is given by , the Cartesian product of the Kleene plus , the set of all finite concatenated strings of digits with at least one digit, the singleton consisting of the radix point ( or ), and the Cantor space , the set of all infinite concatenated strings of digits , with . Each signed-digit representation has a valuation

.

The infinite series always converges to a finite real number.

For other number systems

All base- numerals can be represented as a subset of , the set of all doubly infinite sequences of digits in , where is the set of integers, and the ring of base- numerals is represented by the formal power series ring , the doubly infinite series

where for .

Integers modulo

The set of all signed-digit representations of the integers modulo , is given by the set , the set of all finite concatenated strings of digits of length , with . Each signed-digit representation has a valuation

Prüfer groups

A Prüfer group is the quotient group of the integers and the -adic rationals. The set of all signed-digit representations of the Prüfer group is given by the Kleene star , the set of all finite concatenated strings of digits , with . Each signed-digit representation has a valuation

Circle group

The circle group is the quotient group of the integers and the real numbers. The set of all signed-digit representations of the circle group is given by the Cantor space , the set of all right-infinite concatenated strings of digits . Each signed-digit representation has a valuation

The infinite series always converges.

-adic integers

The set of all signed-digit representations of the -adic integers, is given by the Cantor space , the set of all left-infinite concatenated strings of digits . Each signed-digit representation has a valuation

-adic solenoids

The set of all signed-digit representations of the -adic solenoids, is given by the Cantor space , the set of all doubly infinite concatenated strings of digits . Each signed-digit representation has a valuation

In written and spoken language

Indo-Aryan languages

The oral and written forms of numbers in the Indo-Aryan languages use a negative numeral (e.g., "un" in Hindi and Bengali, "un" or "unna" in Punjabi, "ekon" in Marathi) for the numbers between 11 and 90 that end with a nine. The numbers followed by their names are shown for Punjabi below (the prefix "ik" means "one"): [8]

Similarly, the Sesotho language utilizes negative numerals to form 8's and 9's.

Classical Latin

In Classical Latin, [9] integers 18 and 19 did not even have a spoken, nor written form including corresponding parts for "eight" or "nine" in practice - despite them being in existence. Instead, in Classic Latin,

For upcoming integer numerals [28, 29, 38, 39, ..., 88, 89] the additive form in the language had been much more common, however, for the listed numbers, the above form was still preferred. Hence, approaching thirty, numerals were expressed as: [10]

This is one of the main foundations of contemporary historians' reasoning, explaining why the subtractive I- and II- was so common in this range of cardinals compared to other ranges. Numerals 98 and 99 could also be expressed in both forms, yet "two to hundred" might have sounded a bit odd - clear evidence is the scarce occurrence of these numbers written down in a subtractive fashion in authentic sources.

Finnish Language

There is yet another language having this feature (by now, only in traces), however, still in active use today. This is the Finnish Language, where the (spelled out) numerals are used this way should a digit of 8 or 9 occur. The scheme is like this: [11]

...

Above list is no special case, it consequently appears in larger cardinals as well, e.g.:

Emphasizing of these attributes stay present even in the shortest colloquial forms of numerals:

...

However, this phenomenon has no influence on written numerals, the Finnish use the standard Western-Arabic decimal notation.

Time keeping

In the English language it is common to refer to times as, for example, 'seven to three', 'to' performing the negation.

Other systems

There exist other signed-digit bases such that the base . A notable examples of this is Booth encoding, which has a digit set with and , but which uses a base . The standard binary numeral system would only use digits of value .

Note that non-standard signed-digit representations are not unique. For instance:

The non-adjacent form (NAF) of Booth encoding does guarantee a unique representation for every integer value. However, this only applies for integer values. For example, consider the following repeating binary numbers in NAF,

See also

Notes and references

  1. Dhananjay Phatak, I. Koren (1994) Hybrid Signed-Digit Number Systems: A Unified Framework for Redundant Number Representations with Bounded Carry Propagation Chains
  2. Augustin-Louis Cauchy (16 November 1840) "Sur les moyens d'eviter les erreurs dans les calculs numerique", Comptes rendus 11:789. Also found in Oevres completes Ser. 1, vol. 5, pp. 43442.
  3. Cajori, Florian (1993) [1928-1929]. A History of Mathematical Notations . Dover Publications. p.  57. ISBN   978-0486677668.
  4. John Colson (1726) "A Short Account of Negativo-Affirmativo Arithmetik", Philosophical Transactions of the Royal Society 34:161–173. Available as Early Journal Content from JSTOR
  5. Eduard Selling (1887) Eine neue Rechenmachine, pp. 1518, Berlin
  6. Rudolf Mehmke (1902) "Numerisches Rechen", §4 Beschränkung in den verwendeten Ziffern, Klein's encyclopedia, I-2, p. 944.
  7. Hirschfeld, J. W. P. (1979). Projective Geometries Over Finite Fields. Oxford University Press. p. 8. ISBN   978-0-19-850295-1.
  8. Punjabi numbers from Quizlet
  9. J. Matthew Harrington (2016) Synopsis of Ancient Latin Grammar
  10. from English Wiktionary
  11. from Kielitoimiston sanakirja

Related Research Articles

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

Topological group Group that is a topological space with continuous group action

In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

<i>p</i>-adic number Number system for a prime p which extends the rationals, defining closeness differently

In mathematics, the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two p-adic numbers are considered to be close when their difference is divisible by a high power of p: the higher the power, the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.

In mathematics, a quadric or quadric surface, is a generalization of conic sections. It is a hypersurface in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

In ring theory, a branch of mathematics, the radical of an ideal of a commutative ring is another ideal defined by the property that an element is in the radical if and only if some power of is in . Taking the radical of an ideal is called radicalization. A radical ideal is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal.

Balanced ternary is a ternary numeral system that uses a balanced signed-digit representation of the integers in which the digits have the values −1, 0, and 1. This stands in contrast to the standard (unbalanced) ternary system, in which digits have values 0, 1 and 2. The balanced ternary system can represent all integers without using a separate minus sign; the value of the leading non-zero digit of a number has the sign of the number itself. The balanced ternary system is an example of a non-standard positional numeral system. It was used in some early computers and also in some solutions of balance puzzles.

Positional notation Method for representing or encoding numbers

Positional notation usually denotes the extension to any base of the Hindu–Arabic numeral system. More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred. In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string.

Ring of integers

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits. The name refers to the bijection that exists in this case between the set of non-negative integers and the set of finite strings using a finite set of symbols.

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In mathematics, Serre's modularity conjecture, introduced by Jean-Pierre Serre, states that an odd, irreducible, two-dimensional Galois representation over a finite field arises from a modular form. A stronger version of this conjecture specifies the weight and level of the modular form. The conjecture in the level 1 case was proved by Chandrashekhar Khare in 2005, and a proof of the full conjecture was completed jointly by Khare and Jean-Pierre Wintenberger in 2008.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In mathematics, a Schwartz–Bruhat function, named after Laurent Schwartz and François Bruhat, is a complex valued function on a locally compact abelian group, such as the adeles, that generalizes a Schwartz function on a real vector space. A tempered distribution is defined as a continuous linear functional on the space of Schwartz–Bruhat functions.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In mathematics, Hochschild homology is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

Learning with errors (LWE) is the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus be useful in cryptography.

In discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example, cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.

In mathematics, the mean (topological) dimension of a topological dynamical system is a non-negative extended real number that is a measure of the complexity of the system. Mean dimension was first introduced in 1999 by Gromov. Shortly after it was developed and studied systematically by Lindenstrauss and Weiss. In particular they proved the following key fact: a system with finite topological entropy has zero mean dimension. For various topological dynamical systems with infinite topological entropy, the mean dimension can be calculated or at least bounded from below and above. This allows mean dimension to be used to distinguish between systems with infinite topological entropy. Mean dimension is also related to the problem of embedding topological dynamical systems in shift spaces.

Short integer solution (SIS) and ring-SIS problems are two average-case problems that are used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Ajtai who presented a family of one-way functions based on SIS problem. He showed that it is secure in an average case if the shortest vector problem is hard in a worst-case scenario.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.