This article needs additional citations for verification .(March 2009) |
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state.
The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value.
The initial value of the LFSR is called the seed, and because the operation of the register is deterministic, the stream of values produced by the register is completely determined by its current (or previous) state. Likewise, because the register has a finite number of possible states, it must eventually enter a repeating cycle. However, an LFSR with a well-chosen feedback function can produce a sequence of bits that appears random and has a very long cycle.
Applications of LFSRs include generating pseudo-random numbers, pseudo-noise sequences, fast digital counters, and whitening sequences. Both hardware and software implementations of LFSRs are common.
The mathematics of a cyclic redundancy check, used to provide a quick check against transmission errors, are closely related to those of an LFSR. [1] In general, the arithmetics behind LFSRs makes them very elegant as an object to study and implement. One can produce relatively complex logics with simple building blocks. However, other methods, that are less elegant but perform better, should be considered as well.
The bit positions that affect the next state are called the taps. In the diagram the taps are [16,14,13,11]. The rightmost bit of the LFSR is called the output bit, which is always also a tap. To obtain the next state, the tap bits are XOR-ed sequentially; then, all bits are shifted one place to the right, with the rightmost bit being discarded, and that result of XOR-ing the tap bits is fed back into the now-vacant leftmost bit. To obtain the pseudorandom output stream, read the rightmost bit after each state transition.
The sequence of numbers generated by an LFSR or its XNOR counterpart can be considered a binary numeral system just as valid as Gray code or the natural binary code.
The arrangement of taps for feedback in an LFSR can be expressed in finite field arithmetic as a polynomial mod 2. This means that the coefficients of the polynomial must be 1s or 0s. This is called the feedback polynomial or reciprocal characteristic polynomial. For example, if the taps are at the 16th, 14th, 13th and 11th bits (as shown), the feedback polynomial is
The "one" in the polynomial does not correspond to a tap – it corresponds to the input to the first bit (i.e. x0, which is equivalent to 1). The powers of the terms represent the tapped bits, counting from the left. The first and last bits are always connected as an input and output tap respectively.
The LFSR is maximal-length if and only if the corresponding feedback polynomial is primitive over the Galois field GF(2). [3] [4] This means that the following conditions are necessary (but not sufficient):
Tables of primitive polynomials from which maximum-length LFSRs can be constructed are given below and in the references.
There can be more than one maximum-length tap sequence for a given LFSR length. Also, once one maximum-length tap sequence has been found, another automatically follows. If the tap sequence in an n-bit LFSR is [n, A, B, C, 0], where the 0 corresponds to the x0 = 1 term, then the corresponding "mirror" sequence is [n, n − C, n − B, n − A, 0]. So the tap sequence [32, 22, 2, 1, 0] has as its counterpart [32, 31, 30, 10, 0]. Both give a maximum-length sequence.
An example in C is below:
#include<stdint.h>unsignedlfsr_fib(void){uint16_tstart_state=0xACE1u;/* Any nonzero start state will work. */uint16_tlfsr=start_state;uint16_tbit;/* Must be 16-bit to allow bit<<15 later in the code */unsignedperiod=0;do{/* taps: 16 14 13 11; feedback polynomial: x^16 + x^14 + x^13 + x^11 + 1 */bit=((lfsr>>0)^(lfsr>>2)^(lfsr>>3)^(lfsr>>5))&1u;lfsr=(lfsr>>1)|(bit<<15);++period;}while(lfsr!=start_state);returnperiod;}
If a fast parity or popcount operation is available, the feedback bit can be computed more efficiently as the dot product of the register with the characteristic polynomial:
bit=parity(lfsr&0x002Du);
, or equivalentlybit=popcnt(lfsr&0x002Du)/* & 1u */;
. (The & 1u
turns the popcnt into a true parity function, but the bitshift later bit << 15
makes higher bits irrelevant.)If a rotation operation is available, the new state can be computed as
lfsr=rotateright((lfsr&~1u)|(bit&1u),1);
, or equivalentlylfsr=rotateright(((bit^lfsr)&1u)^lfsr,1);
This LFSR configuration is also known as standard, many-to-one or external XOR gates. The alternative Galois configuration is described in the next section.
A sample python implementation of a similar (16 bit taps at [16,15,13,4]) Fibonacci LFSR would be
start_state=1<<15|1lfsr=start_stateperiod=0whileTrue:# taps: 16 15 13 4; feedback polynomial: x^16 + x^15 + x^13 + x^4 + 1bit=(lfsr^(lfsr>>1)^(lfsr>>3)^(lfsr>>12))&1lfsr=(lfsr>>1)|(bit<<15)period+=1iflfsr==start_state:print(period)break
Where a register of 16 bits is used and the xor tap at the fourth, 13th, 15th and sixteenth bit establishes a maximum sequence length.
Named after the French mathematician Évariste Galois, an LFSR in Galois configuration, which is also known as modular, internal XORs, or one-to-many LFSR, is an alternate structure that can generate the same output stream as a conventional LFSR (but offset in time). [5] In the Galois configuration, when the system is clocked, bits that are not taps are shifted one position to the right unchanged. The taps, on the other hand, are XORed with the output bit before they are stored in the next position. The new output bit is the next input bit. The effect of this is that when the output bit is zero, all the bits in the register shift to the right unchanged, and the input bit becomes zero. When the output bit is one, the bits in the tap positions all flip (if they are 0, they become 1, and if they are 1, they become 0), and then the entire register is shifted to the right and the input bit becomes 1.
To generate the same output stream, the order of the taps is the counterpart (see above) of the order for the conventional LFSR, otherwise the stream will be in reverse. Note that the internal state of the LFSR is not necessarily the same. The Galois register shown has the same output stream as the Fibonacci register in the first section. A time offset exists between the streams, so a different startpoint will be needed to get the same output each cycle.
Below is a C code example for the 16-bit maximal-period Galois LFSR example in the figure:
#include<stdint.h>unsignedlfsr_galois(void){uint16_tstart_state=0xACE1u;/* Any nonzero start state will work. */uint16_tlfsr=start_state;unsignedperiod=0;do{#ifndef LEFTunsignedlsb=lfsr&1u;/* Get LSB (i.e., the output bit). */lfsr>>=1;/* Shift register */if(lsb)/* If the output bit is 1, */lfsr^=0xB400u;/* apply toggle mask. */#elseunsignedmsb=(int16_t)lfsr<0;/* Get MSB (i.e., the output bit). */lfsr<<=1;/* Shift register */if(msb)/* If the output bit is 1, */lfsr^=0x002Du;/* apply toggle mask. */#endif++period;}while(lfsr!=start_state);returnperiod;}
The branch if(lsb)lfsr^=0xB400u;
can also be written as lfsr^=(-lsb)&0xB400u;
which may produce more efficient code on some compilers. In addition, the left-shifting variant may produce even better code, as the msb is the carry from the addition of lfsr
to itself.
State and resulting bits can also be combined and computed in parallel. The following function calculates the next 64 bits using 63-bit polynomial x⁶³ + x⁶² + 1:
#include<stdint.h>uint64_tprsg63(uint64_tlfsr){lfsr=lfsr<<32|(lfsr<<1^lfsr<<2)>>32;lfsr=lfsr<<32|(lfsr<<1^lfsr<<2)>>32;returnlfsr;}
Binary Galois LFSRs like the ones shown above can be generalized to any q-ary alphabet {0, 1, ..., q − 1} (e.g., for binary, q = 2, and the alphabet is simply {0, 1}). In this case, the exclusive-or component is generalized to addition modulo-q (note that XOR is addition modulo 2), and the feedback bit (output bit) is multiplied (modulo-q) by a q-ary value, which is constant for each specific tap point. Note that this is also a generalization of the binary case, where the feedback is multiplied by either 0 (no feedback, i.e., no tap) or 1 (feedback is present). Given an appropriate tap configuration, such LFSRs can be used to generate Galois fields for arbitrary prime values of q.
As shown by George Marsaglia [6] and further analysed by Richard P. Brent, [7] linear feedback shift registers can be implemented using XOR and Shift operations. This approach lends itself to fast execution in software because these operations typically map efficiently into modern processor instructions.
Below is a C code example for a 16-bit maximal-period Xorshift LFSR using the 7,9,13 triplet from John Metcalf: [8]
#include<stdint.h>unsignedlfsr_xorshift(void){uint16_tstart_state=0xACE1u;/* Any nonzero start state will work. */uint16_tlfsr=start_state;unsignedperiod=0;do{// 7,9,13 triplet from http://www.retroprogramming.com/2017/07/xorshift-pseudorandom-numbers-in-z80.htmllfsr^=lfsr>>7;lfsr^=lfsr<<9;lfsr^=lfsr>>13;++period;}while(lfsr!=start_state);returnperiod;}
Binary LFSRs of both Fibonacci and Galois configurations can be expressed as linear functions using matrices in (see GF(2)). [9] Using the companion matrix of the characteristic polynomial of the LFSR and denoting the seed as a column vector , the state of the register in Fibonacci configuration after steps is given by
Matrix for the corresponding Galois form is :
For a suitable initialisation,
the top coefficient of the column vector :
gives the term ak of the original sequence.
These forms generalize naturally to arbitrary fields.
The following table lists examples of maximal-length feedback polynomials (primitive polynomials) for shift-register lengths up to 24. The formalism for maximum-length LFSRs was developed by Solomon W. Golomb in his 1967 book. [10] The number of different primitive polynomials grows exponentially with shift-register length and can be calculated exactly using Euler's totient function [11] (sequence A011260 in the OEIS ).
Bits (n) | Feedback polynomial | Taps | Taps (hex) | Period () |
---|---|---|---|---|
2 | 11 | 0x3 | 3 | |
3 | 110 | 0x6 | 7 | |
4 | 1100 | 0xC | 15 | |
5 | 10100 | 0x14 | 31 | |
6 | 110000 | 0x30 | 63 | |
7 | 1100000 | 0x60 | 127 | |
8 | 10111000 | 0xB8 | 255 | |
9 | 100010000 | 0x110 | 511 | |
10 | 1001000000 | 0x240 | 1,023 | |
11 | 10100000000 | 0x500 | 2,047 | |
12 | 111000001000 | 0xE08 | 4,095 | |
13 | 1110010000000 | 0x1C80 | 8,191 | |
14 | 11100000000010 | 0x3802 | 16,383 | |
15 | 110000000000000 | 0x6000 | 32,767 | |
16 | 1101000000001000 | 0xD008 | 65,535 | |
17 | 10010000000000000 | 0x12000 | 131,071 | |
18 | 100000010000000000 | 0x20400 | 262,143 | |
19 | 1110010000000000000 | 0x72000 | 524,287 | |
20 | 10010000000000000000 | 0x90000 | 1,048,575 | |
21 | 101000000000000000000 | 0x140000 | 2,097,151 | |
22 | 1100000000000000000000 | 0x300000 | 4,194,303 | |
23 | 10000100000000000000000 | 0x420000 | 8,388,607 | |
24 | 111000010000000000000000 | 0xE10000 | 16,777,215 |
Xilinx published an extended list of tap counters up to 168 bit. Tables of maximum length polynomials are available from http://users.ece.cmu.edu/~koopman/lfsr/ and can be generated by the https://github.com/hayguen/mlpolygen project.
LFSRs can be implemented in hardware, and this makes them useful in applications that require very fast generation of a pseudo-random sequence, such as direct-sequence spread spectrum radio. LFSRs have also been used for generating an approximation of white noise in various programmable sound generators.
The repeating sequence of states of an LFSR allows it to be used as a clock divider or as a counter when a non-binary sequence is acceptable, as is often the case where computer index or framing locations need to be machine-readable. [12] LFSR counters have simpler feedback logic than natural binary counters or Gray-code counters, and therefore can operate at higher clock rates. However, it is necessary to ensure that the LFSR never enters an all-zeros state, for example by presetting it at start-up to any other state in the sequence. The table of primitive polynomials shows how LFSRs can be arranged in Fibonacci or Galois form to give maximal periods. One can obtain any other period by adding to an LFSR that has a longer period some logic that shortens the sequence by skipping some states.
LFSRs have long been used as pseudo-random number generators for use in stream ciphers, due to the ease of construction from simple electromechanical or electronic circuits, long periods, and very uniformly distributed output streams. However, an LFSR is a linear system, leading to fairly easy cryptanalysis. For example, given a stretch of known plaintext and corresponding ciphertext, an attacker can intercept and recover a stretch of LFSR output stream used in the system described, and from that stretch of the output stream can construct an LFSR of minimal size that simulates the intended receiver by using the Berlekamp-Massey algorithm. This LFSR can then be fed the intercepted stretch of output stream to recover the remaining plaintext.
Three general methods are employed to reduce this problem in LFSR-based stream ciphers:
Important LFSR-based stream ciphers include A5/1 and A5/2, used in GSM cell phones, E0, used in Bluetooth, and the shrinking generator. The A5/2 cipher has been broken and both A5/1 and E0 have serious weaknesses. [14] [15]
The linear feedback shift register has a strong relationship to linear congruential generators. [16]
This section needs additional citations for verification .(November 2022) |
LFSRs are used in circuit testing for test-pattern generation (for exhaustive testing, pseudo-random testing or pseudo-exhaustive testing) and for signature analysis.
Complete LFSR are commonly used as pattern generators for exhaustive testing, since they cover all possible inputs for an n-input circuit. Maximal-length LFSRs and weighted LFSRs are widely used as pseudo-random test-pattern generators for pseudo-random test applications.
In built-in self-test (BIST) techniques, storing all the circuit outputs on chip is not possible, but the circuit output can be compressed to form a signature that will later be compared to the golden signature (of the good circuit) to detect faults. Since this compression is lossy, there is always a possibility that a faulty output also generates the same signature as the golden signature and the faults cannot be detected. This condition is called error masking or aliasing. BIST is accomplished with a multiple-input signature register (MISR or MSR), which is a type of LFSR. A standard LFSR has a single XOR or XNOR gate, where the input of the gate is connected to several "taps" and the output is connected to the input of the first flip-flop. A MISR has the same structure, but the input to every flip-flop is fed through an XOR/XNOR gate. For example, a 4-bit MISR has a 4-bit parallel output and a 4-bit parallel input. The input of the first flip-flop is XOR/XNORd with parallel input bit zero and the "taps". Every other flip-flop input is XOR/XNORd with the preceding flip-flop output and the corresponding parallel input bit. Consequently, the next state of the MISR depends on the last several states opposed to just the current state. Therefore, a MISR will always generate the same golden signature given that the input sequence is the same every time. Recent applications [17] are proposing set-reset flip-flops as "taps" of the LFSR. This allows the BIST system to optimise storage, since set-reset flip-flops can save the initial seed to generate the whole stream of bits from the LFSR. Nevertheless, this requires changes in the architecture of BIST, is an option for specific applications.
To prevent short repeating sequences (e.g., runs of 0s or 1s) from forming spectral lines that may complicate symbol tracking at the receiver or interfere with other transmissions, the data bit sequence is combined with the output of a linear-feedback register before modulation and transmission. This scrambling is removed at the receiver after demodulation. When the LFSR runs at the same bit rate as the transmitted symbol stream, this technique is referred to as scrambling. When the LFSR runs considerably faster than the symbol stream, the LFSR-generated bit sequence is called chipping code. The chipping code is combined with the data using exclusive or before transmitting using binary phase-shift keying or a similar modulation method. The resulting signal has a higher bandwidth than the data, and therefore this is a method of spread-spectrum communication. When used only for the spread-spectrum property, this technique is called direct-sequence spread spectrum; when used to distinguish several signals transmitted in the same channel at the same time and frequency, it is called code-division multiple access.
Neither scheme should be confused with encryption or encipherment; scrambling and spreading with LFSRs do not protect the information from eavesdropping. They are instead used to produce equivalent streams that possess convenient engineering properties to allow robust and efficient modulation and demodulation.
Digital broadcasting systems that use linear-feedback registers:
Other digital communications systems using LFSRs:
LFSRs are also used in radio jamming systems to generate pseudo-random noise to raise the noise floor of a target communication system.
The German time signal DCF77, in addition to amplitude keying, employs phase-shift keying driven by a 9-stage LFSR to increase the accuracy of received time and the robustness of the data stream in the presence of noise. [19]
In telecommunications, a scrambler is a device that transposes or inverts signals or otherwise encodes a message at the sender's side to make the message unintelligible at a receiver not equipped with an appropriately set descrambling device. Whereas encryption usually refers to operations carried out in the digital domain, scrambling usually refers to operations carried out in the analog domain. Scrambling is accomplished by the addition of components to the original signal or the changing of some important component of the original signal in order to make extraction of the original signal difficult. Examples of the latter might include removing or changing vertical or horizontal sync pulses in television signals; televisions will not be able to display a picture from such a signal. Some modern scramblers are actually encryption devices, the name remaining due to the similarities in use, as opposed to internal operation.
The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto and Takuji Nishimura. Its name derives from the choice of a Mersenne prime as its period length.
A Lagged Fibonacci generator is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence.
A stream cipher is a symmetric key cipher where plaintext digits are combined with a pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit is encrypted one at a time with the corresponding digit of the keystream, to give a digit of the ciphertext stream. Since encryption of each digit is dependent on the current state of the cipher, it is also known as state cipher. In practice, a digit is typically a bit and the combining operation is an exclusive-or (XOR).
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra. In common geometrical contexts, scalar multiplication of a real Euclidean vector by a positive real number multiplies the magnitude of the vector without changing its direction. Scalar multiplication is the multiplication of a vector by a scalar, and is to be distinguished from inner product of two vectors.
In cryptography, the shrinking generator is a form of pseudorandom number generator intended to be used in a stream cipher. It was published in Crypto 1993 by Don Coppersmith, Hugo Krawczyk and Yishay Mansour.
The Berlekamp–Massey algorithm is an algorithm that will find the shortest linear-feedback shift register (LFSR) for a given binary output sequence. The algorithm will also find the minimal polynomial of a linearly recurrent sequence in an arbitrary field. The field requirement means that the Berlekamp–Massey algorithm requires all non-zero elements to have a multiplicative inverse. Reeds and Sloane offer an extension to handle a ring.
A maximum length sequence (MLS) is a type of pseudorandom binary sequence.
A pseudorandom binary sequence (PRBS), pseudorandom binary code or pseudorandom bitstream is a binary sequence that, while generated with a deterministic algorithm, is difficult to predict and exhibits statistical behavior similar to a truly random sequence. PRBS generators are used in telecommunication, such as in analog-to-information conversion, but also in encryption, simulation, correlation technique and time-of-flight spectroscopy. The most common example is the maximum length sequence generated by a (maximal) linear feedback shift register (LFSR). Other examples are Gold sequences, Kasami sequences and JPL sequences, all based on LFSRs.
A self-shrinking generator is a pseudorandom generator that is based on the shrinking generator concept. Variants of the self-shrinking generator based on a linear-feedback shift register (LFSR) are studied for use in cryptography.
A nonlinear-feedback shift register (NLFSR) is a shift register whose input bit is a non-linear function of its previous state.
Grain is a stream cipher submitted to eSTREAM in 2004 by Martin Hell, Thomas Johansson and Willi Meier. It has been selected for the final eSTREAM portfolio for Profile 2 by the eSTREAM project. Grain is designed primarily for restricted hardware environments. It accepts an 80-bit key and a 64-bit IV. The specifications do not recommend a maximum length of output per pair. A number of potential weaknesses in the cipher have been identified and corrected in Grain 128a which is now the recommended cipher to use for hardware environments providing both 128bit security and authentication.
XOR gate is a digital logic gate that gives a true output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true. If both inputs are false (0/LOW) or both are true, a false output results. XOR represents the inequality function, i.e., the output is true if the inputs are not alike otherwise the output is false. A way to remember XOR is "must have one or the other but not both".
In cryptography, SOBER is a family of stream ciphers initially designed by Greg Rose of QUALCOMM Australia starting in 1997. The name is a contrived acronym for Seventeen Octet Byte Enabled Register. Initially the cipher was intended as a replacement for broken ciphers in cellular telephony. The ciphers evolved, and other developers joined the project.
In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.
In cryptography, an alternating step generator (ASG) is a cryptographic pseudorandom number generator used in stream ciphers, based on three linear-feedback shift registers. Its output is a combination of two LFSRs which are stepped (clocked) in an alternating fashion, depending on the output of a third LFSR.
The cube attack is a method of cryptanalysis applicable to a wide variety of symmetric-key algorithms, published by Itai Dinur and Adi Shamir in a September 2008 preprint.
Correlation attacks are a class of cryptographic known-plaintext attacks for breaking stream ciphers whose keystreams are generated by combining the output of several linear-feedback shift registers (LFSRs) using a Boolean function. Correlation attacks exploit a statistical weakness that arises from the specific Boolean function chosen for the keystream. While some Boolean functions are vulnerable to correlation attacks, stream ciphers generated using such functions are not inherently insecure.
In sequence design, a Feedback with Carry Shift Register is the arithmetic or with carry analog of a linear-feedback shift register (LFSR). If is an integer, then an N-ary FCSR of length is a finite state device with a state consisting of a vector of elements in and an integer . The state change operation is determined by a set of coefficients and is defined as follows: compute . Express s as with in . Then the new state is . By iterating the state change an FCSR generates an infinite, eventually periodic sequence of numbers in .
JPL sequences or JPL codes consist of two linear feedback shift registers (LFSRs) whose code sequence lengths La and Lb must be prime. In this case the code sequence length of the generated overall sequence Lc is equal to:
{{cite book}}
: |journal=
ignored (help)CS1 maint: location missing publisher (link)