Maximum length sequence

Last updated

A maximum length sequence (MLS) is a type of pseudorandom binary sequence.

Contents

They are bit sequences generated using maximal linear-feedback shift registers and are so called because they are periodic and reproduce every binary sequence (except the zero vector) that can be represented by the shift registers (i.e., for length-m registers they produce a sequence of length 2m  1). An MLS is also sometimes called an n-sequence or an m-sequence. MLSs are spectrally flat, with the exception of a near-zero DC term.

These sequences may be represented as coefficients of irreducible polynomials in a polynomial ring over Z/2Z.

Practical applications for MLS include measuring impulse responses (e.g., of room reverberation or arrival times from towed sources in the ocean [1] ). They are also used as a basis for deriving pseudo-random sequences in digital communication systems that employ direct-sequence spread spectrum and frequency-hopping spread spectrum transmission systems, and in the efficient design of some fMRI experiments. [2]

Generation

Figure 1: The next value of register a3 in a feedback shift register of length 4 is determined by the modulo-2 sum of a0 and a1. MLS shiftregisters L4.png
Figure 1: The next value of register a3 in a feedback shift register of length 4 is determined by the modulo-2 sum of a0 and a1.

MLS are generated using maximal linear-feedback shift registers. An MLS-generating system with a shift register of length 4 is shown in Fig. 1. It can be expressed using the following recursive relation:

where n is the time index and represents modulo-2 addition. For bit values 0 = FALSE or 1 = TRUE, this is equivalent to the XOR operation.

As MLS are periodic and shift registers cycle through every possible binary value (with the exception of the zero vector), registers can be initialized to any state, with the exception of the zero vector.

Polynomial interpretation

A polynomial over GF(2) can be associated with the linear-feedback shift register. It has degree of the length of the shift register, and has coefficients that are either 0 or 1, corresponding to the taps of the register that feed the xor gate. For example, the polynomial corresponding to Figure 1 is .

A necessary and sufficient condition for the sequence generated by a LFSR to be maximal length is that its corresponding polynomial be primitive. [3]

Implementation

MLS are inexpensive to implement in hardware or software, and relatively low-order feedback shift registers can generate long sequences; a sequence generated using a shift register of length 20 is 220  1 samples long (1,048,575 samples).

Properties of maximum length sequences

MLS have the following properties, as formulated by Solomon Golomb. [4]

Balance property

The occurrence of 0 and 1 in the sequence should be approximately the same. More precisely, in a maximum length sequence of length there are ones and zeros. The number of ones equals the number of zeros plus one, since the state containing only zeros cannot occur.

Run property

A "run" is a sub-sequence of consecutive "1"s or consecutive "0"s within the MLS concerned. The number of runs is the number of such sub-sequences. [ vague ]

Of all the "runs" (consisting of "1"s or "0"s) in the sequence :

Correlation property

The circular autocorrelation of an MLS is a Kronecker delta function [5] [6] (with DC offset and time delay, depending on implementation). For the ±1 convention, i.e., bit value 1 is assigned and bit value 0 , mapping XOR to the negative of the product:

where represents the complex conjugate and represents a circular shift.

The linear autocorrelation of an MLS approximates a Kronecker delta.

Extraction of impulse responses

If a linear time invariant (LTI) system's impulse response is to be measured using a MLS, the response can be extracted from the measured system output y[n] by taking its circular cross-correlation with the MLS. This is because the autocorrelation of a MLS is 1 for zero-lag, and nearly zero (1/N where N is the sequence length) for all other lags; in other words, the autocorrelation of the MLS can be said to approach unit impulse function as MLS length increases.

If the impulse response of a system is h[n] and the MLS is s[n], then

Taking the cross-correlation with respect to s[n] of both sides,

and assuming that φss is an impulse (valid for long sequences)

Any signal with an impulsive autocorrelation can be used for this purpose, but signals with high crest factor, such as the impulse itself, produce impulse responses with poor signal-to-noise ratio. It is commonly assumed that the MLS would then be the ideal signal, as it consists of only full-scale values and its digital crest factor is the minimum, 0 dB. [7] [8] However, after analog reconstruction, the sharp discontinuities in the signal produce strong intersample peaks, degrading the crest factor by 4-8 dB or more, increasing with signal length, making it worse than a sine sweep. [9] Other signals have been designed with minimal crest factor, though it is unknown if it can be improved beyond 3 dB. [10]

Relationship to Hadamard transform

Cohn and Lempel [11] showed the relationship of the MLS to the Hadamard transform. This relationship allows the correlation of an MLS to be computed in a fast algorithm similar to the FFT.

See also

Related Research Articles

In telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.

In telecommunications, a scrambler is a device that transposes or inverts signals or otherwise encodes a message at the sender's side to make the message unintelligible at a receiver not equipped with an appropriately set descrambling device. Whereas encryption usually refers to operations carried out in the digital domain, scrambling usually refers to operations carried out in the analog domain. Scrambling is accomplished by the addition of components to the original signal or the changing of some important component of the original signal in order to make extraction of the original signal difficult. Examples of the latter might include removing or changing vertical or horizontal sync pulses in television signals; televisions will not be able to display a picture from such a signal. Some modern scramblers are actually encryption devices, the name remaining due to the similarities in use, as opposed to internal operation.

A Lagged Fibonacci generator is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence.

In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state.

Rayleigh fading is a statistical model for the effect of a propagation environment on a radio signal, such as that used by wireless devices.

<span class="mw-page-title-main">Berlekamp–Massey algorithm</span>

The Berlekamp–Massey algorithm is an algorithm that will find the shortest linear-feedback shift register (LFSR) for a given binary output sequence. The algorithm will also find the minimal polynomial of a linearly recurrent sequence in an arbitrary field. The field requirement means that the Berlekamp–Massey algorithm requires all non-zero elements to have a multiplicative inverse. Reeds and Sloane offer an extension to handle a ring.

<span class="mw-page-title-main">Daubechies wavelet</span> Orthogonal wavelets

The Daubechies wavelets, based on the work of Ingrid Daubechies, are a family of orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal number of vanishing moments for some given support. With each wavelet type of this class, there is a scaling function which generates an orthogonal multiresolution analysis.

Infinite impulse response (IIR) is a property applying to many linear time-invariant systems that are distinguished by having an impulse response that does not become exactly zero past a certain point but continues indefinitely. This is in contrast to a finite impulse response (FIR) system, in which the impulse response does become exactly zero at times for some finite , thus being of finite duration. Common examples of linear time-invariant systems are most electronic and digital filters. Systems with this property are known as IIR systems or IIR filters.

In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(pm). This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(pm) such that is the entire field GF(pm). This implies that α is a primitive (pm − 1)-root of unity in GF(pm).

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined in the overview below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

A pseudorandom binary sequence (PRBS), pseudorandom binary code or pseudorandom bitstream is a binary sequence that, while generated with a deterministic algorithm, is difficult to predict and exhibits statistical behavior similar to a truly random sequence. PRBS generators are used in telecommunication, such as in analog-to-information conversion, but also in encryption, simulation, correlation technique and time-of-flight spectroscopy. The most common example is the maximum length sequence generated by a (maximal) linear feedback shift register (LFSR). Other examples are Gold sequences, Kasami sequences and JPL sequences, all based on LFSRs.

A self-shrinking generator is a pseudorandom generator that is based on the shrinking generator concept. Variants of the self-shrinking generator based on a linear-feedback shift register (LFSR) are studied for use in cryptography.

A nonlinear-feedback shift register (NLFSR) is a shift register whose input bit is a non-linear function of its previous state.

In telecommunication technology, a Barker code or Barker sequence is a finite sequence of digital values with the ideal autocorrelation property. It is used as a synchronising pattern between the sender and receiver of a stream of bits.

<span class="mw-page-title-main">GPS signals</span> Signals broadcast by GPS satellites

GPS signals are broadcast by Global Positioning System satellites to enable satellite navigation. Receivers on or near the Earth's surface can determine location, time, and velocity using this information. The GPS satellite constellation is operated by the 2nd Space Operations Squadron (2SOPS) of Space Delta 8, United States Space Force.

The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by Michael A. Jenkins and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the special case of polynomials with real coefficients, commonly known as the "RPOLY" algorithm. The latter is "practically a standard in black-box polynomial root-finders".

In cryptography, an alternating step generator (ASG) is a cryptographic pseudorandom number generator used in stream ciphers, based on three linear-feedback shift registers. Its output is a combination of two LFSRs which are stepped (clocked) in an alternating fashion, depending on the output of a third LFSR.

Correlation attacks are a class of cryptographic known-plaintext attacks for breaking stream ciphers whose keystreams are generated by combining the output of several linear-feedback shift registers (LFSRs) using a Boolean function. Correlation attacks exploit a statistical weakness that arises from the specific Boolean function chosen for the keystream. While some Boolean functions are vulnerable to correlation attacks, stream ciphers generated using such functions are not inherently insecure.

In sequence design, a Feedback with Carry Shift Register is the arithmetic or with carry analog of a linear-feedback shift register (LFSR). If is an integer, then an N-ary FCSR of length is a finite state device with a state consisting of a vector of elements in and an integer . The state change operation is determined by a set of coefficients and is defined as follows: compute . Express s as with in . Then the new state is . By iterating the state change an FCSR generates an infinite, eventually periodic sequence of numbers in .

JPL sequences or JPL codes consist of two linear feedback shift registers (LFSRs) whose code sequence lengths La and Lb must be prime. In this case the code sequence length of the generated overall sequence Lc is equal to:

References

  1. Gemba, Kay L.; Vazquez, Heriberto J.; Fialkowski, Joseph; Edelmann, Geoffrey F.; Dzieciuch, Matthew A.; Hodgkiss, William S. (October 2021). "A performance comparison between m-sequences and linear frequency-modulated sweeps for the estimation of travel-time with a moving source". The Journal of the Acoustical Society of America. 150 (4): 2613–2623. Bibcode:2021ASAJ..150.2613G. doi:10.1121/10.0006656. PMID   34717519. S2CID   240355915.
  2. Buracas GT, Boynton GM (July 2002). "Efficient design of event-related fMRI experiments using M-sequences". NeuroImage. 16 (3 Pt 1): 801–13. doi:10.1006/nimg.2002.1116. PMID   12169264. S2CID   7433120.
  3. "Linear Feedback Shift Registers-Implementation, M-Sequence Properties, Feedback Tables", New Wave Instruments (NW), Retrieved 2013.12.03.
  4. Golomb, Solomon W. (1967). Shift register sequences. Holden-Day. ISBN   0-89412-048-4.
  5. Jacobsen, Finn; Juhl, Peter Moller (2013-06-04). Fundamentals of General Linear Acoustics. John Wiley & Sons. ISBN   978-1118636176. A maximum-length sequence is a binary sequence whose circular autocorrelation (except for a small DC-error) is a delta function.
  6. Sarwate, D. V.; Pursley, M. B. (1980-05-01). "Crosscorrelation properties of pseudorandom and related sequences". Proceedings of the IEEE. 68 (5): 593–619. doi:10.1109/PROC.1980.11697. ISSN   0018-9219. S2CID   6179951.
  7. "A Little MLS (Maximum-Length Sequence) Tutorial | dspGuru.com". dspguru.com. Retrieved 2016-05-19. its RMS and peak values are both X, making its crest factor (peak/RMS) equal to 1, the lowest it can get.
  8. "Other Electro-Acoustical Measurement Techniques". www.clear.rice.edu. Retrieved 2016-05-19. The crest factor for MLS is very close to 1, so it makes sense to use this kind of input signal when we need a high signal-to-noise ratio for our measurement
  9. Chan, Ian H. "Swept Sine Chirps for Measuring Impulse Response" (PDF). thinksrs.com. Retrieved 2016-05-19. Maximum-length sequence (MLS) theoretically fits the bill because it has a mathematical crest factor of 0dB, the lowest crest factor possible. However, in practice, the sharp transitions and bandwidth-limited reproduction of the signal result in a crest factor of about 8dB
  10. Friese, M. (1997-10-01). "Multitone signals with low crest factor" (PDF). IEEE Transactions on Communications. 45 (10): 1338–1344. doi:10.1109/26.634697. ISSN   0090-6778.
  11. Cohn, M.; Lempel, A. (January 1977). "On Fast M-Sequence Transforms". IEEE Trans. Inf. Theory. 23 (1): 135–7. doi:10.1109/TIT.1977.1055666.