Triangles with sides in ratio ρ form a closed spiral
Rationality
irrational algebraic
Symbol
ρ
Representations
Decimal
1.32471795724474602596...
Algebraic form
real root of x3 = x + 1
Continued fraction (linear)
[1;3,12,1,1,3,2,3,2,4,2,141,80,...][1] not periodic infinite
In mathematics, the plastic ratio is a geometrical proportion equal to 1.32471795724474602596...;[2] it is the unique real solution of the equation x3 = x + 1.
is the superstable fixed point of the iteration , which is the update step of Newton's method applied to .
The iteration results in the continued reciprocal square root
Dividing the defining trinomial by one obtains , and the conjugate elements of are with and
Approximation as a fraction
Good approximations for the plastic ratio come from its continued fraction expansion, [1; 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, ...].[4] The first few are:
The plastic ratio is the smallest Pisot number.[6] Because the absolute value of the algebraic conjugates is smaller than 1, powers of generate almost integers. For example: After 29 rotation steps the phases of the inward spiraling conjugate pair – initially close to – nearly align with the imaginary axis.
(which is less than 1/3 the eccentricity of the orbit of Venus).
Van der Laan sequence
A fan of plastic Rauzy tiles with areas in ratio Ⴔ. The fractal boundary has box-countingdimension 1.11
In his quest for perceptible clarity, the Dutch Benedictine monk and architect Dom Hans van der Laan (1904-1991) asked for the minimum difference between two sizes, so that we will clearly perceive them as distinct. Also, what is the maximum ratio of two sizes, so that we can still relate them and perceive nearness. According to his observations, the answers are 1/4 and 7/1, spanning a single order of size.[9] Requiring proportional continuity, he constructed a geometric series of eight measures (types of size) with common ratio 2 / (3/4 + 1/71/7) ≈ ρ. Put in rational form, this architectonic system of measure is constructed from a subset of the numbers that bear his name.
The Van der Laan numbers have a close connection to the Perrin and Padovan sequences. In combinatorics, the number of compositions of n into parts 2 and 3 is counted by the nth Van der Laan number.
The Van der Laan sequence is defined by the third-order recurrence relation with initial values
The first few terms are 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86,... (sequence A182097 in the OEIS). The limit ratio between consecutive terms is the plastic ratio: .
The 1924 Cordonnier cut. With S1 = 3, S2 = 4, S3 = 5, the harmonic mean of S2/S1, S1 + S2/S3 and S3/S2 is 3 / (3/4 + 5/7 + 4/5) ≈ ρ + 1/4922.
Table of the eight Van der Laan measures
k
n - m
err
interval
0
3 - 3
1 /1
0
minor element
1
8 - 7
4 /3
1/116
major element
2
10 - 8
7 /4
-1/205
minor piece
3
10 - 7
7 /3
1/116
major piece
4
7 - 3
3 /1
-1/12
minor part
5
8 - 3
4 /1
-1/12
major part
6
13 - 7
16 /3
-1/14
minor whole
7
10 - 3
7 /1
-1/6
major whole
The first 14 indices n for which is prime are n = 5, 6, 7, 9, 10, 16, 21, 32, 39, 86, 130, 471, 668, 1264 (sequence A112882 in the OEIS).[b] The last number has 154 decimal digits.
The sequence can be extended to negative indices using
The characteristic equation of the recurrence is . If the three solutions are real root and conjugate pair and , the Van der Laan numbers can be computed with the Binet formula[11]
, with real and conjugates and the roots of .
Since and , the number is the nearest integer to , with n > 1 and 0.3106288296404670777619027...
Coefficients result in the Binet formula for the related sequence .
The first few terms are 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119,... (sequence A001608 in the OEIS).
This Perrin sequence has the Fermat property: if p is prime, . The converse does not hold, but the small number of pseudoprimes makes the sequence special.[12] The only 7 composite numbers below 108 to pass the test are n = 271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291.[13]
A plastic Rauzy fractal: the combined surface and the three separate tiles have areas in the ratios ρ: ρ: ρ: 1.
The Van der Laan numbers are obtained as integral powers n > 2 of a matrix with real eigenvalue[10]
Alternatively, can be interpreted as incidence matrix for a D0LLindenmayer system on the alphabet with corresponding substitution rule and initiator . The series of words produced by iterating the substitution have the property that the number of c's, b's and a's are equal to successive Van der Laan numbers. Their lengths are
Associated to this string rewriting process is a set composed of three overlapping self-similar tiles called the Rauzy fractal, that visualizes the combinatorial information contained in a multiple-generation letter sequence.[14]
Geometry
Partitioning the square
Three partitions of a square into similar rectangles, 1 = 3·1/3 = 2/3 + 2·1/6 = 1/ρ + 1/ρ + 1/ρ .
There are precisely three ways of partitioning a square into three similar rectangles:[15][16]
The trivial solution given by three congruent rectangles with aspect ratio 3:1.
The solution in which two of the three rectangles are congruent and the third one has twice the side lengths of the other two, where the rectangles have aspect ratio 3:2.
The solution in which the three rectangles are all of different sizes and where they have aspect ratio ρ2. The ratios of the linear sizes of the three rectangles are: ρ (large:medium); ρ2 (medium:small); and ρ3 (large:small). The internal, long edge of the largest rectangle (the square's fault line) divides two of the square's four edges into two segments each that stand to one another in the ratio ρ. The internal, coincident short edge of the medium rectangle and long edge of the small rectangle divides one of the square's other, two edges into two segments that stand to one another in the ratio ρ4.
The fact that a rectangle of aspect ratio ρ2 can be used for dissections of a square into similar rectangles is equivalent to an algebraic property of the number ρ2 related to the Routh–Hurwitz theorem: all of its conjugates have positive real part.[17][18]
The relation xc + t = √ρ in a rho-squared rectangle.
The unique positive node that optimizes cubic Lagrange interpolation on the interval [−1,1] is equal to 0.41779130... The square of is the single real root of polynomial with discriminant [20] Expressed in terms of the plastic ratio, which is verified by insertion into
The constants are related through and can be expressed as infinite geometric series Each term of the series corresponds to the diagonal length of a rectangle with edges in ratio which results from the relation with odd. The diagram shows the sequences of rectangles with common shrink rate converge at a single point on the diagonal of a rho-squared rectangle with length
Plastic spiral
Two plastic spirals with different initial radii.
Chambered nautilus shell and plastic spiral.
A plastic spiral is a logarithmic spiral that gets wider by a factor of for every quarter turn. It is described by the polar equation with initial radius and parameter If drawn on a rectangle with sides in ratio , the spiral has its pole at the foot of altitude of a triangle on the diagonal and passes through vertices of rectangles with aspect ratio which are perpendicularly aligned and successively scaled by a factor
In 1838 Henry Moseley noticed that whorls of a shell of the chambered nautilus are in geometrical progression: "It will be found that the distance of any two of its whorls measured upon a radius vector is one-third that of the next two whorls measured upon the same radius vector ... The curve is therefore a logarithmic spiral."[22] Moseley thus gave the expansion rate for a quarter turn.[d] Considering the plastic ratio a three-dimensional equivalent of the ubiquitous golden ratio, it appears to be a natural candidate for measuring the shell.[e]
History and names
ρ was first studied by Axel Thue in 1912 and by G. H. Hardy in 1919.[6] French high school student Gérard Cordonnier[fr] discovered the ratio for himself in 1924. In his correspondence with Hans van der Laan a few years later, he called it the radiant number (French: le nombre radiant). Van der Laan initially referred to it as the fundamental ratio (Dutch: de grondverhouding), using the plastic number (Dutch: het plastische getal) from the 1950s onward.[24] In 1944 Carl Siegel showed that ρ is the smallest possible Pisot–Vijayaraghavan number and suggested naming it in honour of Thue.
The 1967 St. Benedictusberg Abbey church designed by Hans van der Laan.
Unlike the names of the golden and silver ratios, the word plastic was not intended by van der Laan to refer to a specific substance, but rather in its adjectival sense, meaning something that can be given a three-dimensional shape.[25] This, according to Richard Padovan, is because the characteristic ratios of the number, 3/4 and 1/7, relate to the limits of human perception in relating one physical size to another. Van der Laan designed the 1967 St. Benedictusberg Abbey church to these plastic number proportions.[26]
The plastic number is also sometimes called the silver number, a name given to it by Midhat J. Gazalé[27] and subsequently used by Martin Gardner,[28] but that name is more commonly used for the silver ratio1 + √2, one of the ratios from the family of metallic means first described by Vera W. de Spinadel. Gardner suggested referring to ρ2 as "high phi", and Donald Knuth created a special typographic mark for this name, a variant of the Greek letter phi ("φ") with its central circle raised, resembling the Georgian letter pari ("Ⴔ").
See also
Solutions of equations similar to :
Golden ratio – the only positive solution of the equation
↑ The square of xc is the single real root of polynomial R(x) = 25x3 − 23x2 + 7x − 1 with discriminant D = −26 23.[20] The equality xc = ρ2t is verified by insertion into R.
↑ For a typical 8" nautilus shell the difference in diameter between the apertures of perfect 31/4 and ρ−sized specimens is about 1 mm. Allowing for phenotypic plasticity, they may well be indistinguishable.
↑ An alternative is the omega constant0.567143... which satisfies Ω⋅exp(Ω) = 1. Resembling φ (φ−1) = 1,Mathworld suggests it is like a "golden ratio for exponentials".[23] The interval 31/4 < ρ < Ω−1/2 is smaller than 0.012.
↑ Voet, Caroline[in Dutch] (2019). "1:7 and a series of 8". The digital study room of Dom Hans van der Laan. Van der Laan Foundation. Retrieved 28 November 2023.
↑ Freiling, C.; Rinne, D. (1994), "Tiling a square with similar rectangles", Mathematical Research Letters, 1 (5): 547–558, doi:10.4310/MRL.1994.v1.n5.a3, MR1295549
1 2 Rack, Heinz-Joachim (2013). "An example of optimal nodes for interpolation revisited". In Anastassiou, George A.; Duman, Oktay (eds.). Advances in applied Mathematics and Approximation Theory 2012. Springer Proceedings in Mathematics and Statistics. Vol.41. pp.117–120. doi:10.1007/978-1-4614-6393-1. ISBN978-1-4614-6393-1. ISSN2194-1009.
↑ Shannon, A. G.; Anderson, P. G.; Horadam, A. F. (2006). "Properties of Cordonnier, Perrin and Van der Laan numbers". International Journal of Mathematical Education in Science and Technology. 37 (7): 825–831. doi:10.1080/00207390600712554. S2CID119808971.
↑ Gazalé, Midhat J. (1999). "Chapter VII: The silver number". Gnomon: From Pharaohs to Fractals. Princeton, NJ: Princeton University Press. pp.135–150.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.