Weber modular function

Last updated

In mathematics, the Weber modular functions are a family of three functions f, f1, and f2, [note 1] studied by Heinrich Martin Weber.

Contents

Definition

Let where τ is an element of the upper half-plane. Then the Weber functions are

These are also the definitions in Duke's paper "Continued Fractions and Modular Functions". [note 2] The function is the Dedekind eta function and should be interpreted as . The descriptions as quotients immediately imply

The transformation τ  –1/τ fixes f and exchanges f1 and f2. So the 3-dimensional complex vector space with basis f, f1 and f2 is acted on by the group SL2(Z).

Alternative infinite product

Alternatively, let be the nome,

The form of the infinite product has slightly changed. But since the eta quotients remain the same, then as long as the second uses the nome . The utility of the second form is to show connections and consistent notation with the Ramanujan G- and g-functions and the Jacobi theta functions, both of which conventionally uses the nome.

Relation to the Ramanujan G and g functions

Still employing the nome , define the Ramanujan G- and g-functions as

The eta quotients make their connection to the first two Weber functions immediately apparent. In the nome, assume Then,

Ramanujan found many relations between and which implies similar relations between and . For example, his identity,

leads to

For many values of n, Ramanujan also tabulated for odd n, and for even n. This automatically gives many explicit evaluations of and . For example, using , which are some of the square-free discriminants with class number 2,

and one can easily get from these, as well as the more complicated examples found in Ramanujan's Notebooks.

Relation to Jacobi theta functions

The argument of the classical Jacobi theta functions is traditionally the nome

Dividing them by , and also noting that , then they are just squares of the Weber functions

with even-subscript theta functions purposely listed first. Using the well-known Jacobi identity with even subscripts on the LHS,

therefore,

Relation to j-function

The three roots of the cubic equation

where j(τ) is the j-function are given by . Also, since,

and using the definitions of the Weber functions in terms of the Jacobi theta functions, plus the fact that , then

since and have the same formulas in terms of the Dedekind eta function .

See also

Related Research Articles

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi (1829). Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.

<i>j</i>-invariant

In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function which is holomorphic away from a simple pole at the cusp such that

In number theory, a Heegner number is a square-free positive integer d such that the imaginary quadratic field has class number 1. Equivalently, its ring of integers has unique factorization.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle onto a line. Among these formulas are the following:

Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

<span class="mw-page-title-main">Rogers–Ramanujan continued fraction</span> Continued fraction closely related to the Rogers–Ramanujan identities

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

<span class="mw-page-title-main">Modular lambda function</span>

In mathematics, the modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.

In mathematics, a Ramanujan–Sato series generalizes Ramanujan’s pi formulas such as,

Exponential Tilting (ET), Exponential Twisting, or Exponential Change of Measure (ECM) is a distribution shifting technique used in many parts of mathematics. The different exponential tiltings of a random variable is known as the natural exponential family of .

<span class="mw-page-title-main">Green's law</span> Equation describing evolution of waves in shallow water

In fluid dynamics, Green's law, named for 19th-century British mathematician George Green, is a conservation law describing the evolution of non-breaking, surface gravity waves propagating in shallow water of gradually varying depth and width. In its simplest form, for wavefronts and depth contours parallel to each other, it states:

In combustion, Frank-Kamenetskii theory explains the thermal explosion of a homogeneous mixture of reactants, kept inside a closed vessel with constant temperature walls. It is named after a Russian scientist David A. Frank-Kamenetskii, who along with Nikolay Semenov developed the theory in the 1930s.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

In two-dimensional conformal field theory, Virasoro conformal blocks are special functions that serve as building blocks of correlation functions. On a given punctured Riemann surface, Virasoro conformal blocks form a particular basis of the space of solutions of the conformal Ward identites. Zero-point blocks on the torus are characters of representations of the Virasoro algebra; four-point blocks on the sphere reduce to hypergeometric functions in special cases, but are in general much more complicated. In two dimensions as in other dimensions, conformal blocks play an essential role in the conformal bootstrap approach to conformal field theory.

The two-dimensional critical Ising model is the critical limit of the Ising model in two dimensions. It is a two-dimensional conformal field theory whose symmetry algebra is the Virasoro algebra with the central charge . Correlation functions of the spin and energy operators are described by the minimal model. While the minimal model has been exactly solved, see also, e.g., the article on Ising critical exponents, the solution does not cover other observables such as connectivities of clusters.

References

Notes

  1. f, f1 and f2 are not modular functions (per the Wikipedia definition), but every modular function is a rational function in f, f1 and f2. Some authors use a non-equivalent definition of "modular functions".
  2. https://www.math.ucla.edu/~wdduke/preprints/bams4.pdf Continued Fractions and Modular Functions, W. Duke, pp 22-23