Omega constant

Last updated

The omega constant is a mathematical constant defined as the unique real number that satisfies the equation

Contents

It is the value of W(1), where W is Lambert's W function. The name is derived from the alternate name for Lambert's W function, the omega function. The numerical value of Ω is given by

Ω = 0.567143290409783872999968662210...(sequence A030178 in the OEIS ).
1/Ω = 1.763222834351896710225201776951...(sequence A030797 in the OEIS ).

Properties

Fixed point representation

The defining identity can be expressed, for example, as

or

as well as

Computation

One can calculate Ω iteratively, by starting with an initial guess Ω0, and considering the sequence

This sequence will converge to Ω as n approaches infinity. This is because Ω is an attractive fixed point of the function ex.

It is much more efficient to use the iteration

because the function

in addition to having the same fixed point, also has a derivative that vanishes there. This guarantees quadratic convergence; that is, the number of correct digits is roughly doubled with each iteration.

Using Halley's method, Ω can be approximated with cubic convergence (the number of correct digits is roughly tripled with each iteration): (see also Lambert W function § Numerical evaluation).

Integral representations

An identity due to [ citation needed ]Victor Adamchik[ citation needed ] is given by the relationship

Other relations due to Mező [1] [2] and Kalugin-Jeffrey-Corless [3] are:

The latter two identities can be extended to other values of the W function (see also Lambert W function § Representations).

Transcendence

The constant Ω is transcendental. This can be seen as a direct consequence of the Lindemann–Weierstrass theorem. For a contradiction, suppose that Ω is algebraic. By the theorem, eΩ is transcendental, but Ω = eΩ, which is a contradiction. Therefore, it must be transcendental. [4]

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

In mathematics, a transcendental number is a real or complex number that is not algebraic – that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best-known transcendental numbers are π and e.

In mathematics, Catalan's constantG, is defined by

In quantum computing, Grover's algorithm, also known as the quantum search algorithm, is a quantum algorithm for unstructured search that finds with high probability the unique input to a black box function that produces a particular output value, using just evaluations of the function, where is the size of the function's domain. It was devised by Lov Grover in 1996.

Lambert <i>W</i> function Multivalued function in mathematics

In mathematics, the Lambert W function, also called the omega function or product logarithm, is a multivalued function, namely the branches of the converse relation of the function f(w) = wew, where w is any complex number and ew is the exponential function. The function is named after Johann Lambert, who considered a related problem in 1758. Building on Lambert's work, Leonhard Euler described the W function per se in 1783.

In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.

In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Short-time Fourier transform</span> Fourier-related transform suited to signals that change rather quickly in time

The short-time Fourier transform (STFT), is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in software defined radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use fast Fourier transforms (FFTs) with 2^24 points on desktop computers.

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

A property of a physical system, such as the entropy of a gas, that stays approximately constant when changes occur slowly is called an adiabatic invariant. By this it is meant that if a system is varied between two end points, as the time for the variation between the end points is increased to infinity, the variation of an adiabatic invariant between the two end points goes to zero.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

<span class="mw-page-title-main">Reciprocal gamma function</span>

In mathematics, the reciprocal gamma function is the function

<span class="mw-page-title-main">Wright omega function</span> Mathematical function

In mathematics, the Wright omega function or Wright function, denoted ω, is defined in terms of the Lambert W function as:

<span class="mw-page-title-main">Thermal fluctuations</span> Random temperature-influenced deviations of particles from their average state

In statistical mechanics, thermal fluctuations are random deviations of an atomic system from its average state, that occur in a system at equilibrium. All thermal fluctuations become larger and more frequent as the temperature increases, and likewise they decrease as temperature approaches absolute zero.

The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform. The spectrum is of particular interest when pulses are subject to signal processing. For example, when a chirp pulse is compressed by its matched filter, the resulting waveform contains not only a main narrow pulse but, also, a variety of unwanted artifacts many of which are directly attributable to features in the chirp's spectral characteristics.

In mathematics, in functional analysis, several different wavelets are known by the name Poisson wavelet. In one context, the term "Poisson wavelet" is used to denote a family of wavelets labeled by the set of positive integers, the members of which are associated with the Poisson probability distribution. These wavelets were first defined and studied by Karlene A. Kosanovich, Allan R. Moser and Michael J. Piovoso in 1995–96. In another context, the term refers to a certain wavelet which involves a form of the Poisson integral kernel. In still another context, the terminology is used to describe a family of complex wavelets indexed by positive integers which are connected with the derivatives of the Poisson integral kernel.

The redundancy principle in biology expresses the need of many copies of the same entity to fulfill a biological function. Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells, and many more in molecular and cellular transduction or gene activation and cell signaling. This redundancy is particularly relevant when the sites of activation are physically separated from the initial position of the molecular messengers. The redundancy is often generated for the purpose of resolving the time constraint of fast-activating pathways. It can be expressed in terms of the theory of extreme statistics to determine its laws and quantify how the shortest paths are selected. The main goal is to estimate these large numbers from physical principles and mathematical derivations.

References

  1. Mező, István. "An integral representation for the principal branch of the Lambert W function" . Retrieved 24 April 2022.
  2. Mező, István (2020). "An integral representation for the Lambert W function". arXiv: 2012.02480 [math.CA]..
  3. Kalugin, German A.; Jeffrey, David J.; Corless, Robert M. (2011). "Stieltjes, Poisson and other integral representations for functions of Lambert W". arXiv: 1103.5640 [math.CV]..
  4. Mező, István; Baricz, Árpád (November 2017). "On the Generalization of the Lambert W Function" (PDF). Transactions of the American Mathematical Society. 369 (11): 7928. Retrieved 28 April 2023.