In mathematics, the Dottie number is a constant that is the unique real root of the equation
where the argument of is in radians.
The decimal expansion of the Dottie number is given by:
Since is decreasing and its derivative is non-zero at , it only crosses zero at one point. This implies that the equation has only one real solution. It is the single real-valued fixed point of the cosine function and is a nontrivial example of a universal attracting fixed point. It is also a transcendental number because of the Lindemann–Weierstrass theorem. [1] The generalised case for a complex variable has infinitely many roots, but unlike the Dottie number, they are not attracting fixed points.
The name of the constant originates from a professor of French named Dottie who observed the number by repeatedly pressing the cosine button on her calculator. [2] [nb 1]
The Dottie number, for which an exact series expansion can be obtained using the Faà di Bruno formula, has interesting connections with the Kepler and Bertrand's circle problems. [4]
The Dottie number appears in the closed form expression of some integrals: [5] [6]
Using the Taylor series of the inverse of at (or equivalently, the Lagrange inversion theorem), the Dottie number can be expressed as the infinite series:
where each is a rational number defined for odd n as [2] [7] [8] [nb 2]
The Dottie number can also be expressed as:
where is the inverse of the regularized beta function. This value can be obtained using Kepler's equation, along with other equivalent closed forms. [4]
In Microsoft Excel and LibreOffice Calc spreadsheets, the Dottie number can be expressed in closed form as SQRT(1-(2*BETA.INV(1/2,1/2,3/2)-1)^2)
. In the Mathematica computer algebra system, the Dottie number is Sqrt[1-(2InverseBetaRegularized[1/2,1/2,3/2]-1)^2]
.
Another closed form representation:
where is the inverse survival function of Student's t-distribution. In Microsoft Excel and LibreOffice Calc, due to the specifics of the realization of `TINV` function, this can be expressed as formulas 2*SQRT(3)*TINV(1/2, 3)/(TINV(1/2, 3)^2+3)
and TANH(2*ATANH(1/SQRT(3)*TINV(1/2,3)))
.
In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.
In mathematics, the error function, often denoted by erf, is a function defined as:
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.
In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.
In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices.
In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.
In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar-, or with a superscript .
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .
The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.
In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.
In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities,
In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used.
In Umbral calculus, the Bernoulli umbra is an umbra, a formal symbol, defined by the relation , where is the index-lowering operator, also known as evaluation operator and are Bernoulli numbers, called moments of the umbra. A similar umbra, defined as , where is also often used and sometimes called Bernoulli umbra as well. They are related by equality . Along with the Euler umbra, Bernoulli umbra is one of the most important umbras.