In number theory, a Liouville number is a real number with the property that, for every positive integer , there exists a pair of integers with such that
The inequality implies that Liouville numbers possess an excellent sequence of rational number approximations. In 1844, Joseph Liouville proved a bound showing that there is a limit to how well algebraic numbers can be approximated by rational numbers, and he defined Liouville numbers specifically so that they would have rational approximations better than the ones allowed by this bound. Liouville also exhibited examples of Liouville numbers [1] thereby establishing the existence of transcendental numbers for the first time. [2] One of these examples is Liouville's constant
in which the nth digit after the decimal point is 1 if is the factorial of a positive integer and 0 otherwise. It is known that π and e, although transcendental, are not Liouville numbers. [3]
Liouville numbers can be shown to exist by an explicit construction.
For any integer and any sequence of integers such that for all and for infinitely many , define the number
In the special case when , and for all , the resulting number is called Liouville's constant:
It follows from the definition of that its base- representation is
where the th term is in the th place.
Since this base- representation is non-repeating it follows that is not a rational number. Therefore, for any rational number , .
Now, for any integer , and can be defined as follows:
Then,
Therefore, any such is a Liouville number.
Here the proof will show that the number where c and d are integers and cannot satisfy the inequalities that define a Liouville number. Since every rational number can be represented as such the proof will show that no Liouville number can be rational.
More specifically, this proof shows that for any positive integer n large enough that [equivalently, for any positive integer )], no pair of integers exists that simultaneously satisfies the pair of bracketing inequalities
If the claim is true, then the desired conclusion follows.
Let p and q be any integers with Then,
If then
meaning that such pair of integers would violate the first inequality in the definition of a Liouville number, irrespective of any choice of n .
If, on the other hand, since then, since is an integer, we can assert the sharper inequality From this it follows that
Now for any integer the last inequality above implies
Therefore, in the case such pair of integers would violate the second inequality in the definition of a Liouville number, for some positive integer n.
Therefore, to conclude, there is no pair of integers with that would qualify such an as a Liouville number.
Hence a Liouville number cannot be rational.
No Liouville number is algebraic. The proof of this assertion proceeds by first establishing a property of irrational algebraic numbers. This property essentially says that irrational algebraic numbers cannot be well approximated by rational numbers, where the condition for "well approximated" becomes more stringent for larger denominators. A Liouville number is irrational but does not have this property, so it cannot be algebraic and must be transcendental. The following lemma is usually known as Liouville's theorem (on diophantine approximation), there being several results known as Liouville's theorem.
Lemma: If is an irrational root of an irreducible polynomial of degree with integer coefficients, then there exists a real number such that for all integers with ,
Proof of Lemma: Let be a minimal polynomial with integer coefficients, such that .
By the fundamental theorem of algebra, has at most distinct roots.
Therefore, there exists such that for all we get .
Since is a minimal polynomial of we get , and also is continuous.
Therefore, by the extreme value theorem there exists and such that for all we get .
Both conditions are satisfied for .
Now let be a rational number. Without loss of generality we may assume that . By the mean value theorem, there exists such that
Since and , both sides of that equality are nonzero. In particular and we can rearrange:
Proof of assertion: As a consequence of this lemma, let x be a Liouville number; as noted in the article text, x is then irrational. If x is algebraic, then by the lemma, there exists some integer n and some positive real A such that for all p, q
Let r be a positive integer such that 1/(2r) ≤ A and define m = r + n. Since x is a Liouville number, there exist integers a, b with b > 1 such that
which contradicts the lemma. Hence a Liouville number cannot be algebraic, and therefore must be transcendental.
Establishing that a given number is a Liouville number proves that it is transcendental. However, not every transcendental number is a Liouville number. The terms in the continued fraction expansion of every Liouville number are unbounded; using a counting argument, one can then show that there must be uncountably many transcendental numbers which are not Liouville. Using the explicit continued fraction expansion of e, one can show that e is an example of a transcendental number that is not Liouville. Mahler proved in 1953 that π is another such example. [4]
Consider the number
3.14(3 zeros)1(17 zeros)5(95 zeros)9(599 zeros)2(4319 zeros)6...
where the digits are zero except in positions n! where the digit equals the nth digit following the decimal point in the decimal expansion of π.
As shown in the section on the existence of Liouville numbers, this number, as well as any other non-terminating decimal with its non-zero digits similarly situated, satisfies the definition of a Liouville number. Since the set of all sequences of non-null digits has the cardinality of the continuum, the same is true of the set of all Liouville numbers.
Moreover, the Liouville numbers form a dense subset of the set of real numbers.
From the point of view of measure theory, the set of all Liouville numbers is small. More precisely, its Lebesgue measure, , is zero. The proof given follows some ideas by John C. Oxtoby. [5] : 8
For positive integers and set:
then
Observe that for each positive integer and , then
Since
and then
Now
and it follows that for each positive integer , has Lebesgue measure zero. Consequently, so has .
In contrast, the Lebesgue measure of the set of all real transcendental numbers is infinite (since the set of algebraic numbers is a null set).
One could show even more - the set of Liouville numbers has Hausdorff dimension 0 (a property strictly stronger than having Lebesgue measure 0).
For each positive integer n, set
The set of all Liouville numbers can thus be written as
Each is an open set; as its closure contains all rationals (the from each punctured interval), it is also a dense subset of real line. Since it is the intersection of countably many such open dense sets, L is comeagre, that is to say, it is a dense Gδ set.
The Liouville–Roth irrationality measure (irrationality exponent,approximation exponent, or Liouville–Roth constant) of a real number is a measure of how "closely" it can be approximated by rationals. It is defined by adapting the definition of Liouville numbers: instead of requiring the existence of a sequence of pairs that make the inequality hold for each —a sequence which necessarily contains infinitely many distinct pairs—the irrationality exponent is defined to be the supremum of the set of for which such an infinite sequence exists, that is, the set of such that is satisfied by an infinite number of integer pairs with . [6] : 246 For any value , the infinite set of all rationals satisfying the above inequality yields good approximations of . Conversely, if , then there are at most finitely many with that satisfy the inequality. If is a Liouville number then .
In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .
In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer coefficients. The best-known transcendental numbers are π and e. The quality of a number being transcendental is called transcendence.
The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form, by some expression involving operations on the formal series.
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
The sum of the reciprocals of all prime numbers diverges; that is:
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.
The number e was introduced by Jacob Bernoulli in 1683. More than half a century later, Euler, who had been a student of Jacob's younger brother Johann, proved that e is irrational; that is, that it cannot be expressed as the quotient of two integers.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.
In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form for given functions , and , together with some boundary conditions at extreme values of . The goals of a given Sturm–Liouville problem are:
In mathematics, the Riemann–Liouville integral associates with a real function another function Iαf of the same kind for each value of the parameter α > 0. The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, Iαf is an iterated antiderivative of f of order α. The Riemann–Liouville integral is named for Bernhard Riemann and Joseph Liouville, the latter of whom was the first to consider the possibility of fractional calculus in 1832. The operator agrees with the Euler transform, after Leonhard Euler, when applied to analytic functions. It was generalized to arbitrary dimensions by Marcel Riesz, who introduced the Riesz potential.
In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form
In mathematics, an irrationality measure of a real number is a measure of how "closely" it can be approximated by rationals.
In mathematics, auxiliary functions are an important construction in transcendental number theory. They are functions that appear in most proofs in this area of mathematics and that have specific, desirable properties, such as taking the value zero for many arguments, or having a zero of high order at some point.
In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".