Rationality | Irrational |
---|---|
Representations | |
Decimal | 2.645751311064590590..._10 |
Algebraic form | |
Continued fraction |
The square root of 7 is the positive real number that, when multiplied by itself, gives the prime number 7. It is more precisely called the principal square root of 7, to distinguish it from the negative number with the same property. This number appears in various geometric and number-theoretic contexts. It can be denoted in surd form as: [1]
and in exponent form as:
It is an irrational algebraic number. The first sixty significant digits of its decimal expansion are:
which can be rounded up to 2.646 to within about 99.99% accuracy (about 1 part in 10000); that is, it differs from the correct value by about 1/4,000. The approximation 127/48 (≈ 2.645833...) is better: despite having a denominator of only 48, it differs from the correct value by less than 1/12,000, or less than one part in 33,000.
More than a million decimal digits of the square root of seven have been published. [3]
The extraction of decimal-fraction approximations to square roots by various methods has used the square root of 7 as an example or exercise in textbooks, for hundreds of years. Different numbers of digits after the decimal point are shown: 5 in 1773 [4] and 1852, [5] 3 in 1835, [6] 6 in 1808, [7] and 7 in 1797. [8] An extraction by Newton's method (approximately) was illustrated in 1922, concluding that it is 2.646 "to the nearest thousandth". [9]
For a family of good rational approximations, the square root of 7 can be expressed as the continued fraction
The successive partial evaluations of the continued fraction, which are called its convergents, approach :
Their numerators are 2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257…(sequence A041008 in the OEIS ) , and their denominators are 1, 1, 2, 3, 14, 17, 31, 48, 223, 271, 494, 765, 3554, 4319, 7873, 12192,…(sequence A041009 in the OEIS ).
Each convergent is a best rational approximation of ; in other words, it is closer to than any rational with a smaller denominator. Approximate decimal equivalents improve linearly (number of digits proportional to convergent number) at a rate of less than one digit per step:
Every fourth convergent, starting with 8/3, expressed as x/y, satisfies the Pell's equation [10]
When is approximated with the Babylonian method, starting with x1 = 3 and using xn+1 = 1/2(xn + 7/xn), the nth approximant xn is equal to the 2nth convergent of the continued fraction:
All but the first of these satisfy the Pell's equation above.
The Babylonian method is equivalent to Newton's method for root finding applied to the polynomial . The Newton's method update, is equal to when . The method therefore converges quadratically (number of accurate decimal digits proportional to the square of the number of Newton or Babylonian steps).
In plane geometry, the square root of 7 can be constructed via a sequence of dynamic rectangles, that is, as the largest diagonal of those rectangles illustrated here. [11] [12] [13]
The minimal enclosing rectangle of an equilateral triangle of edge length 2 has a diagonal of the square root of 7. [14]
Due to the Pythagorean theorem and Legendre's three-square theorem, is the smallest square root of a natural number that cannot be the distance between any two points of a cubic integer lattice (or equivalently, the length of the space diagonal of a rectangular cuboid with integer side lengths). is the next smallest such number. [15]
On the reverse of the current US one-dollar bill, the "large inner box" has a length-to-width ratio of the square root of 7, and a diagonal of 6.0 inches, to within measurement accuracy. [16]
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .
A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence of integer numbers. The sequence can be finite or infinite, resulting in a finite continued fraction like
In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system. The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes.
In mathematics, an nth root of a number x is a number r which, when raised to the power of the positive integer n, yields x:
In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other cube roots of 8 are and . The three cube roots of −27i are:
The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.
62 (sixty-two) is the natural number following 61 and preceding 63.
A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite.
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.
In mathematics, the plastic ratio is a geometrical proportion close to 53/40. Its true value is the real solution of the equation x3 = x + 1.
Methods of computing square roots are algorithms for approximating the non-negative square root of a positive real number . Since all square roots of natural numbers, other than of perfect squares, are irrational, square roots can usually only be computed to some finite precision: these methods typically construct a series of increasingly accurate approximations.
Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is
The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as or . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property. The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality.
In mathematics, an infinite periodic continued fraction is a simple continued fraction that can be placed in the form
The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:
The metallic mean of a natural number n is a positive real number, denoted here that satisfies the following equivalent characterizations:
A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol, or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and π occurring in such diverse contexts as geometry, number theory, statistics, and calculus.
The square root of 6 is the positive real number that, when multiplied by itself, gives the natural number 6. It is more precisely called the principal square root of 6, to distinguish it from the negative number with the same property. This number appears in numerous geometric and number-theoretic contexts. It can be denoted in surd form as:
Dynamic Symmetry root rectangles.