Square root of 3

Last updated
Square root of 3
Equilateral triangle with side 2.svg
The height of an equilateral triangle with sides of length 2 equals the square root of 3.
Representations
Decimal1.7320508075688772935...
Continued fraction

The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as or . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property. The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality.

Contents

As of December 2013, its numerical value in decimal notation had been computed to at least ten billion digits. [1] Its decimal expansion, written here to 65 decimal places, is given by OEIS:  A002194 :

1.732050807568877293527446341505872366942805253810380628055806

The fraction (1.732142857...) can be used as a good approximation. Despite having a denominator of only 56, it differs from the correct value by less than (approximately , with a relative error of ). The rounded value of 1.732 is correct to within 0.01% of the actual value.

The fraction (1.73205080756...) is accurate to .

Archimedes reported a range for its value: . [2]

The lower limit is an accurate approximation for to (six decimal places, relative error ) and the upper limit to (four decimal places, relative error ).

Expressions

It can be expressed as the continued fraction [1; 1, 2, 1, 2, 1, 2, 1, …](sequence A040001 in the OEIS ).

So it is true to say:

then when  :

It can also be expressed by generalized continued fractions such as

which is [1; 1, 2, 1, 2, 1, 2, 1, …] evaluated at every second term.

Geometry and trigonometry

Equilateral triangle with height square root of 3.svg
The height of an equilateral triangle with edge length 2 is 3. Also, the long leg of a 30-60-90 triangle with hypotenuse 2.
Root 3 Hexagon.svg
And, the height of a regular hexagon with sides of length 1.
The space diagonal of the unit cube is [?]3. Square root of 3 in cube.svg
The space diagonal of the unit cube is 3.
Distances between vertices of a double unit cube are square roots of the first six natural numbers, including the square root of 3 ([?]7 is not possible due to Legendre's three-square theorem) Distances between double cube corners.svg
Distances between vertices of a double unit cube are square roots of the first six natural numbers, including the square root of 3 (7 is not possible due to Legendre's three-square theorem)
This projection of the Bilinski dodecahedron is a rhombus with diagonal ratio [?]3. Bilinski dodecahedron, ortho matrix.png
This projection of the Bilinski dodecahedron is a rhombus with diagonal ratio 3.

The square root of 3 can be found as the leg length of an equilateral triangle that encompasses a circle with a diameter of 1.

If an equilateral triangle with sides of length 1 is cut into two equal halves, by bisecting an internal angle across to make a right angle with one side, the right angle triangle's hypotenuse is length one, and the sides are of length and . From this, , , and .

The square root of 3 also appears in algebraic expressions for various other trigonometric constants, including [3] the sines of 3°, 12°, 15°, 21°, 24°, 33°, 39°, 48°, 51°, 57°, 66°, 69°, 75°, 78°, 84°, and 87°.

It is the distance between parallel sides of a regular hexagon with sides of length 1.

It is the length of the space diagonal of a unit cube.

The vesica piscis has a major axis to minor axis ratio equal to . This can be shown by constructing two equilateral triangles within it.

Other uses and occurrence

Power engineering

In power engineering, the voltage between two phases in a three-phase system equals times the line to neutral voltage. This is because any two phases are 120° apart, and two points on a circle 120 degrees apart are separated by times the radius (see geometry examples above).

Special functions

It is known that most roots of the nth derivatives of (where n < 18 and is the Bessel function of the first kind of order ) are transcendental. The only exceptions are the numbers , which are the algebraic roots of both and . [4] [ clarification needed ]

See also

Other references

Related Research Articles

<span class="mw-page-title-main">Golden ratio</span> Number, approximately 1.618

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if

<span class="mw-page-title-main">Square root</span> Number whose square is a given number

In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .

In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction, the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers are called the coefficients or terms of the continued fraction.

In mathematics, taking the nth root is an operation involving two numbers, the radicand and the index or degree. Taking the nth root is written as , where x is the radicand and n is the index. This is pronounced as "the nth root of x". The definition then of an nth root of a number x is a number r which, when raised to the power of the positive integer n, yields x:

<span class="mw-page-title-main">Cube root</span> Number whose cube is a given number

In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other cube roots of 8 are and . The three cube roots of −27i are:

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is a positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

<span class="mw-page-title-main">Elongated triangular pyramid</span> 7th Johnson solid (7 faces)

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

<span class="mw-page-title-main">Augmented triangular prism</span> 49th Johnson solid

In geometry, the augmented triangular prism is a polyhedron constructed by attaching an equilateral square pyramid onto the square face of a triangular prism. As a result, it is an example of Johnson solid. It can be visualized as the chemical compound, known as capped trigonal prismatic molecular geometry.

<span class="mw-page-title-main">Biaugmented triangular prism</span> 50th Johnson solid

In geometry, the biaugmented triangular prism is a polyhedron constructed from a triangular prism by attaching two equilateral square pyramids onto two of its square faces. It is an example of Johnson solid.

Methods of computing square roots are algorithms for approximating the non-negative square root of a positive real number . Since all square roots of natural numbers, other than of perfect squares, are irrational, square roots can usually only be computed to some finite precision: these methods typically construct a series of increasingly accurate approximations.

Approximations of <span class="texhtml mvar" style="font-style:italic;">π</span> Varying methods used to calculate pi

Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is

In mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form

The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

<span class="mw-page-title-main">Spiral of Theodorus</span> Polygonal curve made from right triangles

In geometry, the spiral of Theodorus is a spiral composed of right triangles, placed edge-to-edge. It was named after Theodorus of Cyrene.

<span class="mw-page-title-main">Exact trigonometric values</span> Trigonometric numbers in terms of square roots

In mathematics, the values of the trigonometric functions can be expressed approximately, as in , or exactly, as in . While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots. The angles with trigonometric values that are expressible in this way are exactly those that can be constructed with a compass and straight edge, and the values are called constructible numbers.

<span class="mw-page-title-main">Calabi triangle</span>

The Calabi triangle is a special triangle found by Eugenio Calabi and defined by its property of having three different placements for the largest square that it contains. It is an isosceles triangle which is obtuse with an irrational but algebraic ratio between the lengths of its sides and its base.

<span class="mw-page-title-main">Square root of 6</span> Positive real number which when multiplied by itself gives 6

The square root of 6 is the positive real number that, when multiplied by itself, gives the natural number 6. It is more precisely called the principal square root of 6, to distinguish it from the negative number with the same property. This number appears in numerous geometric and number-theoretic contexts. It can be denoted in surd form as:

<span class="mw-page-title-main">Square root of 7</span> Positive real number which when multiplied by itself gives 7

The square root of 7 is the positive real number that, when multiplied by itself, gives the prime number 7. It is more precisely called the principal square root of 7, to distinguish it from the negative number with the same property. This number appears in various geometric and number-theoretic contexts. It can be denoted in surd form as:

References

  1. Komsta, Łukasz (December 2013). "Computations | Łukasz Komsta". komsta.net. WordPress. Retrieved September 24, 2016.
  2. Knorr, Wilbur R. (June 1976). "Archimedes and the measurement of the circle: a new interpretation" . Archive for History of Exact Sciences . 15 (2): 115–140. doi:10.1007/bf00348496. JSTOR   41133444. MR   0497462. S2CID   120954547 . Retrieved November 15, 2022 via SpringerLink.
  3. Wiseman, Julian D. A. (June 2008). "Sin and Cos in Surds". JDAWiseman.com. Retrieved November 15, 2022.
  4. Lorch, Lee; Muldoon, Martin E. (1995). "Transcendentality of zeros of higher dereivatives of functions involving Bessel functions". International Journal of Mathematics and Mathematical Sciences. 18 (3): 551–560. doi: 10.1155/S0161171295000706 .
  5. S., D.; Jones, M. F. (1968). "22900D approximations to the square roots of the primes less than 100". Mathematics of Computation. 22 (101): 234–235. doi:10.2307/2004806. JSTOR   2004806.
  6. Uhler, H. S. (1951). "Approximations exceeding 1300 decimals for , , and distribution of digits in them". Proc. Natl. Acad. Sci. U.S.A. 37 (7): 443–447. doi: 10.1073/pnas.37.7.443 . PMC   1063398 . PMID   16578382.
  7. Wells, D. (1997). The Penguin Dictionary of Curious and Interesting Numbers (Revised ed.). London: Penguin Group. p. 23.