Square root of 3

Last updated
Square root of 3
Equilateral triangle with side 2.svg
The height of an equilateral triangle with sides of length 2 equals the square root of 3.
Representations
Decimal1.7320508075688772935...
Continued fraction

The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as or . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property. The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality.[ citation needed ]

Contents

In 2013, its numerical value in decimal notation was computed to ten billion digits. [1] Its decimal expansion, written here to 65 decimal places, is given by OEIS:  A002194 :

1.732050807568877293527446341505872366942805253810380628055806

The fraction (1.732142857...) can be used as a good approximation. Despite having a denominator of only 56, it differs from the correct value by less than (approximately , with a relative error of ). The rounded value of 1.732 is correct to within 0.01% of the actual value.[ citation needed ]

The fraction (1.73205080756...) is accurate to .[ citation needed ]

Archimedes reported a range for its value: . [2]

The lower limit is an accurate approximation for to (six decimal places, relative error ) and the upper limit to (four decimal places, relative error ).

Expressions

It can be expressed as the simple continued fraction [1; 1, 2, 1, 2, 1, 2, 1, …](sequence A040001 in the OEIS ).

So it is true to say:

then when  :

Geometry and trigonometry

Equilateral triangle with height square root of 3.svg
The height of an equilateral triangle with edge length 2 is 3. Also, the long leg of a 30-60-90 triangle with hypotenuse 2.
Root 3 Hexagon.svg
And, the height of a regular hexagon with sides of length 1.
The space diagonal of the unit cube is [?]3. Square root of 3 in cube.svg
The space diagonal of the unit cube is 3.
Distances between vertices of a double unit cube are square roots of the first six natural numbers, including the square root of 3 ([?]7 is not possible due to Legendre's three-square theorem) Distances between double cube corners.svg
Distances between vertices of a double unit cube are square roots of the first six natural numbers, including the square root of 3 (7 is not possible due to Legendre's three-square theorem)
This projection of the Bilinski dodecahedron is a rhombus with diagonal ratio [?]3. Bilinski dodecahedron, ortho matrix.png
This projection of the Bilinski dodecahedron is a rhombus with diagonal ratio 3.

The square root of 3 can be found as the leg length of an equilateral triangle that encompasses a circle with a diameter of 1.

If an equilateral triangle with sides of length 1 is cut into two equal halves, by bisecting an internal angle across to make a right angle with one side, the right angle triangle's hypotenuse is length one, and the sides are of length and . From this, , , and .

The square root of 3 also appears in algebraic expressions for various other trigonometric constants, including [3] the sines of 3°, 12°, 15°, 21°, 24°, 33°, 39°, 48°, 51°, 57°, 66°, 69°, 75°, 78°, 84°, and 87°.

It is the distance between parallel sides of a regular hexagon with sides of length 1.

It is the length of the space diagonal of a unit cube.

The vesica piscis has a major axis to minor axis ratio equal to . This can be shown by constructing two equilateral triangles within it.

Other uses and occurrence

Power engineering

In power engineering, the voltage between two phases in a three-phase system equals times the line to neutral voltage. This is because any two phases are 120° apart, and two points on a circle 120 degrees apart are separated by times the radius (see geometry examples above).[ citation needed ]

Special functions

It is known that most roots of the nth derivatives of (where n < 18 and is the Bessel function of the first kind of order ) are transcendental. The only exceptions are the numbers , which are the algebraic roots of both and . [4] [ clarification needed ]

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Golden ratio</span> Number, approximately 1.618

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if

A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.

<span class="mw-page-title-main">Square root</span> Number whose square is a given number

In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

<span class="mw-page-title-main">Vesica piscis</span> Shape that is the intersection of two circles with the same radius

The vesica piscis is a type of lens, a mathematical shape formed by the intersection of two disks with the same radius, intersecting in such a way that the center of each disk lies on the perimeter of the other. In Latin, "vesica piscis" literally means "bladder of a fish", reflecting the shape's resemblance to the conjoined dual air bladders found in most fish. In Italian, the shape's name is mandorla ("almond"). A similar shape in three dimensions is the lemon.

<span class="mw-page-title-main">Elongated triangular pyramid</span> Polyhedron constructed with tetrahedra and a triangular prism

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

<span class="mw-page-title-main">Augmented triangular prism</span> 49th Johnson solid

In geometry, the augmented triangular prism is a polyhedron constructed by attaching an equilateral square pyramid onto the square face of a triangular prism. As a result, it is an example of Johnson solid. It can be visualized as the chemical compound, known as capped trigonal prismatic molecular geometry.

<span class="mw-page-title-main">Biaugmented triangular prism</span> 50th Johnson solid

In geometry, the biaugmented triangular prism is a polyhedron constructed from a triangular prism by attaching two equilateral square pyramids onto two of its square faces. It is an example of Johnson solid. It can be found in stereochemistry in bicapped trigonal prismatic molecular geometry.

<span class="mw-page-title-main">Augmented pentagonal prism</span> 52nd Johnson solid

In geometry, the augmented pentagonal prism is a polyhedron that can be constructed by attaching an equilateral square pyramid onto the square face of pentagonal prism. It is an example of Johnson solid.

<span class="mw-page-title-main">Biaugmented pentagonal prism</span> 53rd Johnson solid

In geometry, the biaugmented pentagonal prism is a polyhedron constructed from a pentagonal prism by attaching two equilateral square pyramids onto each of its square faces. It is an example of Johnson solid.

In geometry, the area enclosed by a circle of radius r is πr2. Here, the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

Tribimaximal mixing is a specific postulated form for the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) lepton mixing matrix U. Tribimaximal mixing is defined by a particular choice of the matrix of moduli-squared of the elements of the PMNS matrix as follows:

The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

<span class="mw-page-title-main">Spiral of Theodorus</span> Polygonal curve made from right triangles

In geometry, the spiral of Theodorus is a spiral composed of right triangles, placed edge-to-edge. It was named after Theodorus of Cyrene.

<span class="mw-page-title-main">Exact trigonometric values</span> Trigonometric values in terms of square roots and fractions

In mathematics, the values of the trigonometric functions can be expressed approximately, as in , or exactly, as in . While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots. The angles with trigonometric values that are expressible in this way are exactly those that can be constructed with a compass and straight edge, and the values are called constructible numbers.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Square root of 6</span> Positive real number which when multiplied by itself gives 6

The square root of 6 is the positive real number that, when multiplied by itself, gives the natural number 6. It is more precisely called the principal square root of 6, to distinguish it from the negative number with the same property. This number appears in numerous geometric and number-theoretic contexts. It can be denoted in surd form as:

Bimaximal mixing refers to a proposed form of the lepton mixing matrix. It is characterized by the neutrino being a bimaximal mixture of and and being completely decoupled from the , i.e. a uniform mixture of and . The is consequently a uniform mixture of and . Other notable properties are the symmetries between the and flavours and and mass eigenstates and an absence of CP violation. The moduli squared of the matrix elements have to be:

<span class="mw-page-title-main">Square root of 7</span> Positive real number which when multiplied by itself gives 7

The square root of 7 is the positive real number that, when multiplied by itself, gives the prime number 7. It is more precisely called the principal square root of 7, to distinguish it from the negative number with the same property. This number appears in various geometric and number-theoretic contexts. It can be denoted in surd form as:

References

  1. Komsta, Łukasz (December 2013). "Computations | Łukasz Komsta". komsta.net. WordPress. Archived from the original on 2023-10-02. Retrieved September 24, 2016.
  2. Knorr, Wilbur R. (June 1976). "Archimedes and the measurement of the circle: a new interpretation" . Archive for History of Exact Sciences . 15 (2): 115–140. doi:10.1007/bf00348496. JSTOR   41133444. MR   0497462. S2CID   120954547 . Retrieved November 15, 2022 via SpringerLink.
  3. Wiseman, Julian D. A. (June 2008). "Sin and Cos in Surds". JDAWiseman.com. Retrieved November 15, 2022.
  4. Lorch, Lee; Muldoon, Martin E. (1995). "Transcendentality of zeros of higher dereivatives of functions involving Bessel functions". International Journal of Mathematics and Mathematical Sciences. 18 (3): 551–560. doi: 10.1155/S0161171295000706 .

Further reading