Iterative method

Last updated

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones.

Contents

A specific implementation with termination criteria for a given iterative method like gradient descent, hill climbing, Newton's method, or quasi-Newton methods like BFGS, is an algorithm of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however, heuristic-based iterative methods are also common.

In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations by Gaussian elimination). Iterative methods are often the only choice for nonlinear equations. However, iterative methods are often useful even for linear problems involving many variables (sometimes on the order of millions), where direct methods would be prohibitively expensive (and in some cases impossible) even with the best available computing power. [1]

Attractive fixed points

If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x1 in the basin of attraction of x, and let xn+1 = f(xn) for n  1, and the sequence {xn}n  1 will converge to the solution x. Here xn is the nth approximation or iteration of x and xn+1 is the next or n + 1 iteration of x. Alternately, superscripts in parentheses are often used in numerical methods, so as not to interfere with subscripts with other meanings. (For example, x(n+1) = f(x(n)).) If the function f is continuously differentiable, a sufficient condition for convergence is that the spectral radius of the derivative is strictly bounded by one in a neighborhood of the fixed point. If this condition holds at the fixed point, then a sufficiently small neighborhood (basin of attraction) must exist.

Linear systems

In the case of a system of linear equations, the two main classes of iterative methods are the stationary iterative methods, and the more general Krylov subspace methods.

Stationary iterative methods

Introduction

Stationary iterative methods solve a linear system with an operator approximating the original one; and based on a measurement of the error in the result (the residual), form a "correction equation" for which this process is repeated. While these methods are simple to derive, implement, and analyze, convergence is only guaranteed for a limited class of matrices.

Definition

An iterative method is defined by

and for a given linear system with exact solution the error by

An iterative method is called linear if there exists a matrix such that

and this matrix is called the iteration matrix. An iterative method with a given iteration matrix is called convergent if the following holds

An important theorem states that for a given iterative method and its iteration matrix it is convergent if and only if its spectral radius is smaller than unity, that is,

The basic iterative methods work by splitting the matrix into

and here the matrix should be easily invertible. The iterative methods are now defined as

From this follows that the iteration matrix is given by

Examples

Basic examples of stationary iterative methods use a splitting of the matrix such as

where is only the diagonal part of , and is the strict lower triangular part of . Respectively, is the strict upper triangular part of .

Linear stationary iterative methods are also called relaxation methods.

Krylov subspace methods

Krylov subspace methods work by forming a basis of the sequence of successive matrix powers times the initial residual (the Krylov sequence). The approximations to the solution are then formed by minimizing the residual over the subspace formed. The prototypical method in this class is the conjugate gradient method (CG) which assumes that the system matrix is symmetric positive-definite. For symmetric (and possibly indefinite) one works with the minimal residual method (MINRES). In the case of non-symmetric matrices, methods such as the generalized minimal residual method (GMRES) and the biconjugate gradient method (BiCG) have been derived.

Convergence of Krylov subspace methods

Since these methods form a basis, it is evident that the method converges in N iterations, where N is the system size. However, in the presence of rounding errors this statement does not hold; moreover, in practice N can be very large, and the iterative process reaches sufficient accuracy already far earlier. The analysis of these methods is hard, depending on a complicated function of the spectrum of the operator.

Preconditioners

The approximating operator that appears in stationary iterative methods can also be incorporated in Krylov subspace methods such as GMRES (alternatively, preconditioned Krylov methods can be considered as accelerations of stationary iterative methods), where they become transformations of the original operator to a presumably better conditioned one. The construction of preconditioners is a large research area.

History

Jamshīd al-Kāshī used iterative methods to calculate the sine of 1° and π in The Treatise of Chord and Sine to high precision. An early iterative method for solving a linear system appeared in a letter of Gauss to a student of his. He proposed solving a 4-by-4 system of equations by repeatedly solving the component in which the residual was the largest [ citation needed ].

The theory of stationary iterative methods was solidly established with the work of D.M. Young starting in the 1950s. The conjugate gradient method was also invented in the 1950s, with independent developments by Cornelius Lanczos, Magnus Hestenes and Eduard Stiefel, but its nature and applicability were misunderstood at the time. Only in the 1970s was it realized that conjugacy based methods work very well for partial differential equations, especially the elliptic type.

See also

Related Research Articles

In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots of a real-valued function. The most basic version starts with a real-valued function f, its derivative f, and an initial guess x0 for a root of f. If f satisfies certain assumptions and the initial guess is close, then

In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method. Arnoldi finds an approximation to the eigenvalues and eigenvectors of general matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

<span class="mw-page-title-main">Gauss–Newton algorithm</span> Mathematical algorithm

The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function. Since a sum of squares must be nonnegative, the algorithm can be viewed as using Newton's method to iteratively approximate zeroes of the components of the sum, and thus minimizing the sum. In this sense, the algorithm is also an effective method for solving overdetermined systems of equations. It has the advantage that second derivatives, which can be challenging to compute, are not required.

<span class="mw-page-title-main">Conjugate gradient method</span> Mathematical optimization algorithm

In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems.

In linear algebra, the order-rKrylov subspace generated by an n-by-n matrix A and a vector b of dimension n is the linear subspace spanned by the images of b under the first r powers of A, that is,

Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, and is mostly applied to nonlinear electrical circuits. It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of sinusoids can represent the solution, then balances current and voltage sinusoids to satisfy Kirchhoff's law. The method is commonly used to simulate circuits which include nonlinear elements, and is most applicable to systems with feedback in which limit cycles occur.

In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel, and is similar to the Jacobi method. Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. A publication was not delivered before 1874 by Seidel.

In numerical linear algebra, the Jacobi method is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.

In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.

In mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.

In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model. It is used when there is a non-zero amount of correlation between the residuals in the regression model. GLS is employed to improve statistical efficiency and reduce the risk of drawing erroneous inferences, as compared to conventional least squares and weighted least squares methods. It was first described by Alexander Aitken in 1935.

In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem. The preconditioned problem is then usually solved by an iterative method.

Plane wave expansion method (PWE) refers to a computational technique in electromagnetics to solve the Maxwell's equations by formulating an eigenvalue problem out of the equation. This method is popular among the photonic crystal community as a method of solving for the band structure of specific photonic crystal geometries. PWE is traceable to the analytical formulations, and is useful in calculating modal solutions of Maxwell's equations over an inhomogeneous or periodic geometry. It is specifically tuned to solve problems in a time-harmonic forms, with non-dispersive media.

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

Iterative refinement is an iterative method proposed by James H. Wilkinson to improve the accuracy of numerical solutions to systems of linear equations.

Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods.

The conjugate residual method is an iterative numeric method used for solving systems of linear equations. It's a Krylov subspace method very similar to the much more popular conjugate gradient method, with similar construction and convergence properties.

The Kansa method is a computer method used to solve partial differential equations. Its main advantage is it is very easy to understand and program on a computer. It is much less complicated than the finite element method. Another advantage is it works well on multi variable problems. The finite element method is complicated when working with more than 3 space variables and time.

In the mathematical discipline of numerical linear algebra, a matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. Many iterative methods depend upon the direct solution of matrix equations involving matrices more general than tridiagonal matrices. These matrix equations can often be solved directly and efficiently when written as a matrix splitting. The technique was devised by Richard S. Varga in 1960.

In mathematics, Anderson acceleration, also called Anderson mixing, is a method for the acceleration of the convergence rate of fixed-point iterations. Introduced by Donald G. Anderson, this technique can be used to find the solution to fixed point equations often arising in the field of computational science.

References

  1. Amritkar, Amit; de Sturler, Eric; Świrydowicz, Katarzyna; Tafti, Danesh; Ahuja, Kapil (2015). "Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver". Journal of Computational Physics. 303: 222. arXiv: 1501.03358 . Bibcode:2015JCoPh.303..222A. doi:10.1016/j.jcp.2015.09.040.