Subgradient method

Last updated

Subgradient methods are convex optimization methods which use subderivatives. Originally developed by Naum Z. Shor and others in the 1960s and 1970s, subgradient methods are convergent when applied even to a non-differentiable objective function. When the objective function is differentiable, sub-gradient methods for unconstrained problems use the same search direction as the method of steepest descent.

Contents

Subgradient methods are slower than Newton's method when applied to minimize twice continuously differentiable convex functions. However, Newton's method fails to converge on problems that have non-differentiable kinks.

In recent years, some interior-point methods have been suggested for convex minimization problems, but subgradient projection methods and related bundle methods of descent remain competitive. For convex minimization problems with very large number of dimensions, subgradient-projection methods are suitable, because they require little storage.

Subgradient projection methods are often applied to large-scale problems with decomposition techniques. Such decomposition methods often allow a simple distributed method for a problem.

Classical subgradient rules

Let be a convex function with domain A classical subgradient method iterates

where denotes any subgradient of at and is the iterate of If is differentiable, then its only subgradient is the gradient vector itself. It may happen that is not a descent direction for at We therefore maintain a list that keeps track of the lowest objective function value found so far, i.e.

Step size rules

Many different types of step-size rules are used by subgradient methods. This article notes five classical step-size rules for which convergence proofs are known:

For all five rules, the step-sizes are determined "off-line", before the method is iterated; the step-sizes do not depend on preceding iterations. This "off-line" property of subgradient methods differs from the "on-line" step-size rules used for descent methods for differentiable functions: Many methods for minimizing differentiable functions satisfy Wolfe's sufficient conditions for convergence, where step-sizes typically depend on the current point and the current search-direction. An extensive discussion of stepsize rules for subgradient methods, including incremental versions, is given in the books by Bertsekas [1] and by Bertsekas, Nedic, and Ozdaglar. [2]

Convergence results

For constant step-length and scaled subgradients having Euclidean norm equal to one, the subgradient method converges to an arbitrarily close approximation to the minimum value, that is

by a result of Shor. [3]

These classical subgradient methods have poor performance and are no longer recommended for general use. [4] [5] However, they are still used widely in specialized applications because they are simple and they can be easily adapted to take advantage of the special structure of the problem at hand.

Subgradient-projection and bundle methods

During the 1970s, Claude Lemaréchal and Phil Wolfe proposed "bundle methods" of descent for problems of convex minimization. [6] The meaning of the term "bundle methods" has changed significantly since that time. Modern versions and full convergence analysis were provided by Kiwiel. [7] Contemporary bundle-methods often use "level control" rules for choosing step-sizes, developing techniques from the "subgradient-projection" method of Boris T. Polyak (1969). However, there are problems on which bundle methods offer little advantage over subgradient-projection methods. [4] [5]

Constrained optimization

Projected subgradient

One extension of the subgradient method is the projected subgradient method, which solves the constrained optimization problem

minimize subject to

where is a convex set. The projected subgradient method uses the iteration

where is projection on and is any subgradient of at

General constraints

The subgradient method can be extended to solve the inequality constrained problem

minimize subject to

where are convex. The algorithm takes the same form as the unconstrained case

where is a step size, and is a subgradient of the objective or one of the constraint functions at Take

where denotes the subdifferential of If the current point is feasible, the algorithm uses an objective subgradient; if the current point is infeasible, the algorithm chooses a subgradient of any violated constraint.

See also

Related Research Articles

<span class="mw-page-title-main">Taylor's theorem</span> Approximation of a function by a truncated power series

In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.

<span class="mw-page-title-main">Gradient descent</span> Optimization algorithm

Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for finding a local minimum of a differentiable multivariate function

In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate. It allows in particular for a far reaching generalization of Lagrangian duality.

<span class="mw-page-title-main">Newton's method in optimization</span> Method for finding stationary points of a function

In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function F, which are solutions to the equation F (x) = 0. As such, Newton's method can be applied to the derivative f of a twice-differentiable function f to find the roots of the derivative (solutions to f ′(x) = 0), also known as the critical points of f. These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article. This is relevant in optimization, which aims to find (global) minima of the function f.

In (unconstrained) mathematical optimization, a backtracking line search is a line search method to determine the amount to move along a given search direction. Its use requires that the objective function is differentiable and that its gradient is known.

Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets. Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.

In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving unconstrained nonlinear optimization problems. Like the related Davidon–Fletcher–Powell method, BFGS determines the descent direction by preconditioning the gradient with curvature information. It does so by gradually improving an approximation to the Hessian matrix of the loss function, obtained only from gradient evaluations via a generalized secant method.

The Frank–Wolfe algorithm is an iterative first-order optimization algorithm for constrained convex optimization. Also known as the conditional gradient method, reduced gradient algorithm and the convex combination algorithm, the method was originally proposed by Marguerite Frank and Philip Wolfe in 1956. In each iteration, the Frank–Wolfe algorithm considers a linear approximation of the objective function, and moves towards a minimizer of this linear function.

In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem. Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem. Therefore, the solution to the primal is an upper bound to the solution of the dual, and the solution of the dual is a lower bound to the solution of the primal. This fact is called weak duality.

In mathematical optimization, the ellipsoid method is an iterative method for minimizing convex functions over convex sets. The ellipsoid method generates a sequence of ellipsoids whose volume uniformly decreases at every step, thus enclosing a minimizer of a convex function.

<span class="mw-page-title-main">Quasiconvex function</span> Mathematical function with convex lower level sets

In mathematics, a quasiconvex function is a real-valued function defined on an interval or on a convex subset of a real vector space such that the inverse image of any set of the form is a convex set. For a function of a single variable, along any stretch of the curve the highest point is one of the endpoints. The negative of a quasiconvex function is said to be quasiconcave.

Limited-memory BFGS is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using a limited amount of computer memory. It is a popular algorithm for parameter estimation in machine learning. The algorithm's target problem is to minimize over unconstrained values of the real-vector where is a differentiable scalar function.

Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations.

Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier. The augmented Lagrangian is related to, but not identical with, the method of Lagrange multipliers.

In optimization problems in applied mathematics, the duality gap is the difference between the primal and dual solutions. If is the optimal dual value and is the optimal primal value then the duality gap is equal to . This value is always greater than or equal to 0. The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds.

Coordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function. At each iteration, the algorithm determines a coordinate or coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over the corresponding coordinate hyperplane while fixing all other coordinates or coordinate blocks. A line search along the coordinate direction can be performed at the current iterate to determine the appropriate step size. Coordinate descent is applicable in both differentiable and derivative-free contexts.

For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.

In the mathematical theory of probability, the drift-plus-penalty method is used for optimization of queueing networks and other stochastic systems.

The Barzilai-Borwein method is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, and perform competitively with conjugate gradient methods for many problems. Not depending on the objective itself, it can also solve some systems of linear and non-linear equations.

(Stochastic) variance reduction is an algorithmic approach to minimizing functions that can be decomposed into finite sums. By exploiting the finite sum structure, variance reduction techniques are able to achieve convergence rates that are impossible to achieve with methods that treat the objective as an infinite sum, as in the classical Stochastic approximation setting.

References

  1. Bertsekas, Dimitri P. (2015). Convex Optimization Algorithms (Second ed.). Belmont, MA.: Athena Scientific. ISBN   978-1-886529-28-1.
  2. Bertsekas, Dimitri P.; Nedic, Angelia; Ozdaglar, Asuman (2003). Convex Analysis and Optimization (Second ed.). Belmont, MA.: Athena Scientific. ISBN   1-886529-45-0.
  3. The approximate convergence of the constant step-size (scaled) subgradient method is stated as Exercise 6.3.14(a) in Bertsekas (page 636): Bertsekas, Dimitri P. (1999). Nonlinear Programming (Second ed.). Cambridge, MA.: Athena Scientific. ISBN   1-886529-00-0. On page 636, Bertsekas attributes this result to Shor: Shor, Naum Z. (1985). Minimization Methods for Non-differentiable Functions. Springer-Verlag. ISBN   0-387-12763-1.
  4. 1 2 Lemaréchal, Claude (2001). "Lagrangian relaxation". In Michael Jünger and Denis Naddef (ed.). Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000. Lecture Notes in Computer Science. Vol. 2241. Berlin: Springer-Verlag. pp. 112–156. doi:10.1007/3-540-45586-8_4. ISBN   3-540-42877-1. MR   1900016. S2CID   9048698.
  5. 1 2 Kiwiel, Krzysztof C.; Larsson, Torbjörn; Lindberg, P. O. (August 2007). "Lagrangian relaxation via ballstep subgradient methods". Mathematics of Operations Research . 32 (3): 669–686. doi:10.1287/moor.1070.0261. MR   2348241.
  6. Bertsekas, Dimitri P. (1999). Nonlinear Programming (Second ed.). Cambridge, MA.: Athena Scientific. ISBN   1-886529-00-0.
  7. Kiwiel, Krzysztof (1985). Methods of Descent for Nondifferentiable Optimization. Berlin: Springer Verlag. p. 362. ISBN   978-3540156420. MR   0797754.

Further reading