Almost integer

Last updated
Ed Pegg Jr. noted that the length d equals
1
2
1
30
(
61421
-
23
5831385
)
{\displaystyle {\frac {1}{2}}{\sqrt {{\frac {1}{30}}(61421-23{\sqrt {5831385}})}}}
, which is very close to 7 (7.0000000857 ca.) Almost integer in triangle.svg
Ed Pegg Jr. noted that the length d equals , which is very close to 7 (7.0000000857 ca.)

In recreational mathematics, an almost integer (or near-integer) is any number that is not an integer but is very close to one. Almost integers may be considered interesting when they arise in some context in which they are unexpected.

Contents

Almost integers relating to the golden ratio and Fibonacci numbers

Some examples of almost integers are high powers of the golden ratio , for example:

The fact that these powers approach integers is non-coincidental, because the golden ratio is a Pisot–Vijayaraghavan number.

The ratios of Fibonacci or Lucas numbers can also make almost integers, for instance:

The above examples can be generalized by the following sequences, which generate near-integers approaching Lucas numbers with increasing precision:

As n increases, the number of consecutive nines or zeros beginning at the tenths place of a(n) approaches infinity.

Almost integers relating to e and π

Other occurrences of non-coincidental near-integers involve the three largest Heegner numbers:

where the non-coincidence can be better appreciated when expressed in the common simple form: [2]

where

and the reason for the squares is due to certain Eisenstein series. The constant is sometimes referred to as Ramanujan's constant.

Almost integers that involve the mathematical constants π and e have often puzzled mathematicians. An example is: The explanation for this seemingly remarkable coincidence was given by A. Doman in September 2023, and is a result of a sum related to Jacobi theta functions as follows: The first term dominates since the sum of the terms for total The sum can therefore be truncated to where solving for gives Rewriting the approximation for and using the approximation for gives Thus, rearranging terms gives Ironically, the crude approximation for yields an additional order of magnitude of precision. [1]

Another example involving these constants is:


See also

Related Research Articles

<span class="mw-page-title-main">Golden ratio</span> Number, approximately 1.618

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

<span class="mw-page-title-main">Error function</span> Sigmoid shape special function

In mathematics, the error function, often denoted by erf, is a function defined as:

<span class="mw-page-title-main">Prime-counting function</span> Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Lucas number</span> Infinite integer series where the next number is the sum of the two preceding it

The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence. Individual numbers in the Lucas sequence are known as Lucas numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

<span class="mw-page-title-main">Josephson effect</span> Quantum physical phenomenon

In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. The effect is named after the British physicist Brian Josephson, who predicted in 1962 the mathematical relationships for the current and voltage across the weak link. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mechanics are observable at ordinary, rather than atomic, scale. The Josephson effect has many practical applications because it exhibits a precise relationship between different physical measures, such as voltage and frequency, facilitating highly accurate measurements.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In number theory, a Heegner number is a square-free positive integer d such that the imaginary quadratic field has class number 1. Equivalently, the ring of algebraic integers of has unique factorization.

A mathematical coincidence is said to occur when two expressions with no direct relationship show a near-equality which has no apparent theoretical explanation.

<span class="mw-page-title-main">Lévy distribution</span> Probability distribution

In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile. It is a special case of the inverse-gamma distribution. It is a stable distribution.

In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees.

In mathematics, Gelfond's constant, named after Aleksandr Gelfond, is eπ, that is, e raised to the power π. Like both e and π, this constant is a transcendental number. This was first established by Gelfond and may now be considered as an application of the Gelfond–Schneider theorem, noting that

<span class="mw-page-title-main">Bring radical</span> Real root of the polynomial x^5+x+a

In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial

The Hückel method or Hückel molecular orbital theory, proposed by Erich Hückel in 1930, is a simple method for calculating molecular orbitals as linear combinations of atomic orbitals. The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules, such as ethylene, benzene, butadiene, and pyridine. It provides the theoretical basis for Hückel's rule that cyclic, planar molecules or ions with π-electrons are aromatic. It was later extended to conjugated molecules such as pyridine, pyrrole and furan that contain atoms other than carbon and hydrogen (heteroatoms). A more dramatic extension of the method to include σ-electrons, known as the extended Hückel method (EHM), was developed by Roald Hoffmann. The extended Hückel method gives some degree of quantitative accuracy for organic molecules in general and was used to provide computational justification for the Woodward–Hoffmann rules. To distinguish the original approach from Hoffmann's extension, the Hückel method is also known as the simple Hückel method (SHM).

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

In mathematics, the Fibonacci numbers form a sequence defined recursively by:

The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

<span class="mw-page-title-main">Skew normal distribution</span> Probability distribution

In probability theory and statistics, the skew normal distribution is a continuous probability distribution that generalises the normal distribution to allow for non-zero skewness.

References

  1. 1 2 Eric Weisstein, "Almost Integer" at MathWorld
  2. "More on e^(pi*SQRT(163))".