Almost integer Last updated December 17, 2025 Almost integers relating to the golden ratio and Fibonacci numbers Some examples of almost integers are high powers of the golden ratio ϕ = 1 + 5 2 ≈ 1.618 {\displaystyle \phi ={\frac {1+{\sqrt {5}}}{2}}\approx 1.618} , for example:
ϕ 17 = 3571 + 1597 5 2 ≈ 3571.00028 ϕ 18 = 2889 + 1292 5 ≈ 5777.999827 ϕ 19 = 9349 + 4181 5 2 ≈ 9349.000107 {\displaystyle {\begin{aligned}\phi ^{17}&={\frac {3571+1597{\sqrt {5}}}{2}}\approx 3571.00028\\[6pt]\phi ^{18}&=2889+1292{\sqrt {5}}\approx 5777.999827\\[6pt]\phi ^{19}&={\frac {9349+4181{\sqrt {5}}}{2}}\approx 9349.000107\end{aligned}}} The fact that these powers approach integers is non-coincidental, because the golden ratio is a Pisot–Vijayaraghavan number .
The ratios of Fibonacci or Lucas numbers can also make almost integers, for instance:
Fib ( 360 ) Fib ( 216 ) ≈ 1242282009792667284144565908481.999999999999999999999999999999195 {\displaystyle {\frac {\operatorname {Fib} (360)}{\operatorname {Fib} (216)}}\approx 1242282009792667284144565908481.999999999999999999999999999999195} Lucas ( 361 ) Lucas ( 216 ) ≈ 2010054515457065378082322433761.000000000000000000000000000000497 {\displaystyle {\frac {\operatorname {Lucas} (361)}{\operatorname {Lucas} (216)}}\approx 2010054515457065378082322433761.000000000000000000000000000000497} The above examples can be generalized by the following sequences, which generate near-integers approaching Lucas numbers with increasing precision:
a ( n ) = Fib ( 45 × 2 n ) Fib ( 27 × 2 n ) ≈ Lucas ( 18 × 2 n ) {\displaystyle a(n)={\frac {\operatorname {Fib} (45\times 2^{n})}{\operatorname {Fib} (27\times 2^{n})}}\approx \operatorname {Lucas} (18\times 2^{n})} a ( n ) = Lucas ( 45 × 2 n + 1 ) Lucas ( 27 × 2 n ) ≈ Lucas ( 18 × 2 n + 1 ) {\displaystyle a(n)={\frac {\operatorname {Lucas} (45\times 2^{n}+1)}{\operatorname {Lucas} (27\times 2^{n})}}\approx \operatorname {Lucas} (18\times 2^{n}+1)} As n increases, the number of consecutive nines or zeros beginning at the tenths place of a (n ) approaches infinity.
Almost integers relating to e and π Other occurrences of non-coincidental near-integers involve the three largest Heegner numbers :
e π 43 0 ≈ 000 00000 0 8847 36743.99977 7466 {\displaystyle e^{\pi {\sqrt {43{\phantom {0}}}}}\approx \;{\phantom {000\,00000\,0}}8847\,36743.99977\,7466} e π 67 0 ≈ 000 000 14 71979 52743.99999 86624 54 {\displaystyle e^{\pi {\sqrt {67{\phantom {0}}}}}\approx \;{\phantom {000\,000}}14\,71979\,52743.99999\,86624\,54} e π 163 ≈ 262 53741 26407 68743.99999 99999 99250 07 {\displaystyle e^{\pi {\sqrt {163}}}\approx \;262\,53741\,26407\,68743.99999\,99999\,99250\,07} where the non-coincidence can be better appreciated when expressed in the common simple form: [ 2]
e π 43 0 = 12 3 ( 00 9 2 − 1 ) 3 + 744 − 2.225 … ⋅ 10 − 4 {\displaystyle e^{\pi {\sqrt {43{\phantom {0}}}}}=12^{3}({\phantom {00}}9^{2}-1)^{3}+744\ -\ 2.225\ldots \cdot 10^{-4}} e π 67 0 = 12 3 ( 0 21 2 − 1 ) 3 + 744 − 1.337 … ⋅ 10 − 6 {\displaystyle e^{\pi {\sqrt {67{\phantom {0}}}}}=12^{3}({\phantom {0}}21^{2}-1)^{3}+744\ -\ 1.337\ldots \cdot 10^{-6}} e π 163 = 12 3 ( 231 2 − 1 ) 3 + 744 − 7.499 … ⋅ 10 − 13 {\displaystyle e^{\pi {\sqrt {163}}}=12^{3}(231^{2}-1)^{3}+744\ -\ 7.499\ldots \cdot 10^{-13}} where
21 = 3 ⋅ 7 , 231 = 3 ⋅ 7 ⋅ 11 , 744 = 24 ⋅ 31 {\displaystyle 21=3\cdot 7,\quad 231=3\cdot 7\cdot 11,\quad 744=24\cdot 31} and the reason for the squares is due to certain Eisenstein series . The constant e π 163 {\displaystyle e^{\pi {\sqrt {163}}}} is sometimes referred to as Ramanujan's constant .
Almost integers that involve the mathematical constants π and e have often puzzled mathematicians. An example is: e π − π = 19.99909 99791 89 … {\displaystyle e^{\pi }-\pi =19.99909\,99791\,89\ldots } The explanation for this seemingly remarkable coincidence was given by A. Doman in September 2023, and is a result of a sum related to Jacobi theta functions as follows: ∑ k = 1 ∞ ( 8 π k 2 − 2 ) e − π k 2 = 1. {\displaystyle \sum _{k=1}^{\infty }\left(8\pi k^{2}-2\right)e^{-\pi k^{2}}=1.} The first term dominates since the sum of the terms for k ≥ 2 {\displaystyle k\geq 2} total ∼ 0.00034 36. {\displaystyle \sim 0.00034\,36.} The sum can therefore be truncated to ( 8 π − 2 ) e − π ≈ 1 , {\displaystyle \left(8\pi -2\right)e^{-\pi }\approx 1,} where solving for e π {\displaystyle e^{\pi }} gives e π ≈ 8 π − 2. {\displaystyle e^{\pi }\approx 8\pi -2.} Rewriting the approximation for e π {\displaystyle e^{\pi }} and using the approximation for 7 π ≈ 22 {\displaystyle 7\pi \approx 22} gives e π ≈ π + 7 π − 2 ≈ π + 22 − 2 = π + 20. {\displaystyle e^{\pi }\approx \pi +7\pi -2\approx \pi +22-2=\pi +20.} Thus, rearranging terms gives e π − π ≈ 20. {\displaystyle e^{\pi }-\pi \approx 20.} Ironically, the crude approximation for 7 π {\displaystyle 7\pi } yields an additional order of magnitude of precision. [ 1]
Another example involving these constants is: e + π + e π + e π + π e = 59.99945 90558 … {\displaystyle e+\pi +e\pi +e^{\pi }+\pi ^{e}=59.99945\,90558\ldots }
This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.