Rauzy fractal

Last updated
Rauzy fractal Rauzy fractal.png
Rauzy fractal

In mathematics, the Rauzy fractal is a fractal set associated with the Tribonacci substitution

Contents

It was studied in 1981 by Gérard Rauzy, [1] with the idea of generalizing the dynamic properties of the Fibonacci morphism. That fractal set can be generalized to other maps over a 3-letter alphabet, generating other fractal sets with interesting properties, such as periodic tiling of the plane and self-similarity in three homothetic parts.

Definitions

Tribonacci word

The infinite tribonacci word is a word constructed by iteratively applying the Tribonacci or Rauzy map : , , . [2] [3] It is an example of a morphic word. Starting from 1, the Tribonacci words are: [4]

We can show that, for , ; hence the name "Tribonacci".

Fractal construction

Construction Rauzy fractal construction.png
Construction

Consider, now, the space with cartesian coordinates (x,y,z). The Rauzy fractal is constructed this way: [5]

1) Interpret the sequence of letters of the infinite Tribonacci word as a sequence of unitary vectors of the space, with the following rules (1 = direction x, 2 = direction y, 3 = direction z).

2) Then, build a "stair" by tracing the points reached by this sequence of vectors (see figure). For example, the first points are:

etc...Every point can be colored according to the corresponding letter, to stress the self-similarity property.

3) Then, project those points on the contracting plane (plane orthogonal to the main direction of propagation of the points, none of those projected points escape to infinity).

Properties

Variants and generalization

For any unimodular substitution of Pisot type, which verifies a coincidence condition (apparently always verified), one can construct a similar set called "Rauzy fractal of the map". They all display self-similarity and generate, for the examples below, a periodic tiling of the plane.

See also

Related Research Articles

<span class="mw-page-title-main">Snub cube</span> Archimedean solid with 38 faces

In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

In mathematics, the Thue–Morse sequence, or Prouhet–Thue–Morse sequence, is the binary sequence obtained by starting with 0 and successively appending the Boolean complement of the sequence obtained thus far. The first few steps of this procedure yield the strings 0 then 01, 0110, 01101001, 0110100110010110, and so on, which are prefixes of the Thue–Morse sequence. The full sequence begins:

In mathematics, a Pisot–Vijayaraghavan number, also called simply a Pisot number or a PV number, is a real algebraic integer greater than 1, all of whose Galois conjugates are less than 1 in absolute value. These numbers were discovered by Axel Thue in 1912 and rediscovered by G. H. Hardy in 1919 within the context of diophantine approximation. They became widely known after the publication of Charles Pisot's dissertation in 1938. They also occur in the uniqueness problem for Fourier series. Tirukkannapuram Vijayaraghavan and Raphael Salem continued their study in the 1940s. Salem numbers are a closely related set of numbers.

In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A. The free semigroup on A is the subsemigroup of A containing all elements except the empty string. It is usually denoted A+.

In mathematics, the Prouhet–Thue–Morse constant, named for Eugène Prouhet, Axel Thue, and Marston Morse, is the number—denoted by τ—whose binary expansion 0.01101001100101101001011001101001... is given by the Prouhet–Thue–Morse sequence. That is,

<span class="mw-page-title-main">Sturmian word</span> Kind of infinitely long sequence of characters

In mathematics, a Sturmian word, named after Jacques Charles François Sturm, is a certain kind of infinitely long sequence of characters. Such a sequence can be generated by considering a game of English billiards on a square table. The struck ball will successively hit the vertical and horizontal edges labelled 0 and 1 generating a sequence of letters. This sequence is a Sturmian word.

Feller's coin-tossing constants are a set of numerical constants which describe asymptotic probabilities that in n independent tosses of a fair coin, no run of k consecutive heads appears.

A Markov partition in mathematics is a tool used in dynamical systems theory, allowing the methods of symbolic dynamics to be applied to the study of hyperbolic dynamics. By using a Markov partition, the system can be made to resemble a discrete-time Markov process, with the long-term dynamical characteristics of the system represented as a Markov shift. The appellation 'Markov' is appropriate because the resulting dynamics of the system obeys the Markov property. The Markov partition thus allows standard techniques from symbolic dynamics to be applied, including the computation of expectation values, correlations, topological entropy, topological zeta functions, Fredholm determinants and the like.

In mathematics, the Rudin–Shapiro sequence, also known as the Golay–Rudin–Shapiro sequence, is an infinite 2-automatic sequence named after Marcel Golay, Walter Rudin, and Harold S. Shapiro, who independently investigated its properties.

In computer science, the complexity function of a word or string is the function that counts the number of distinct factors of that string. More generally, the complexity function of a formal language counts the number of distinct words of given length.

In applied mathematics and mathematical analysis, the fractal derivative or Hausdorff derivative is a non-Newtonian generalization of the derivative dealing with the measurement of fractals, defined in fractal geometry. Fractal derivatives were created for the study of anomalous diffusion, by which traditional approaches fail to factor in the fractal nature of the media. A fractal measure t is scaled according to tα. Such a derivative is local, in contrast to the similarly applied fractional derivative. Fractal calculus is formulated as a generalized of standard calculus

In mathematics and computer science, a morphic word or substitutive word is an infinite sequence of symbols which is constructed from a particular class of endomorphism of a free monoid.

In mathematics, a sesquipower or Zimin word is a string over an alphabet with identical prefix and suffix. Sesquipowers are unavoidable patterns, in the sense that all sufficiently long strings contain one.

In mathematics, a recurrent word or sequence is an infinite word over a finite alphabet in which every factor occurs infinitely many times. An infinite word is recurrent if and only if it is a sesquipower.

In mathematics and computer science, the critical exponent of a finite or infinite sequence of symbols over a finite alphabet describes the largest number of times a contiguous subsequence can be repeated. For example, the critical exponent of "Mississippi" is 7/3, as it contains the string "ississi", which is of length 7 and period 3.

In mathematics, Ostrowski numeration, named after Alexander Ostrowski, is either of two related numeration systems based on continued fractions: a non-standard positional numeral system for integers and a non-integer representation of real numbers.

The Fibonacci word fractal is a fractal curve defined on the plane from the Fibonacci word.

<span class="mw-page-title-main">Valérie Berthé</span> French mathematician

Valérie Berthé is a French mathematician who works as a director of research for the Centre national de la recherche scientifique (CNRS) at the Institut de Recherche en Informatique Fondamentale (IRIF), a joint project between CNRS and Paris Diderot University. Her research involves symbolic dynamics, combinatorics on words, discrete geometry, numeral systems, tessellations, and fractals.

References

  1. Rauzy, Gérard (1982). "Nombres algébriques et substitutions" (PDF). Bull. Soc. Math. Fr. (in French). 110: 147–178. Zbl   0522.10032.
  2. Lothaire (2005) p.525
  3. Pytheas Fogg (2002) p.232
  4. Lothaire (2005) p.546
  5. Pytheas Fogg (2002) p.233
  6. Messaoudi, Ali (2000). "Frontière du fractal de Rauzy et système de numération complexe. (Boundary of the Rauzy fractal and complex numeration system)" (PDF). Acta Arith. (in French). 95 (3): 195–224. Zbl   0968.28005.