Radar horizon

Last updated
Radar horizon. Low elevation region.gif
Radar horizon.

The radar horizon is a critical area of performance for aircraft detection systems, defined by the distance at which the radar beam rises enough above the Earth's surface to make detection of a target at the lowest level possible. It is associated with the low elevation region of performance, and its geometry depends on terrain, radar height, and signal processing. This concept is associated with the notions of radar shadow, the clutter zone, and the clear zone.

Contents

Airborne objects can exploit the radar shadow zone and clutter zone to avoid radar detection by using a technique called nap-of-the-earth navigation. [1]

Definition

Without taking into account the refraction through the atmosphere, the radar horizon would be the geometrical distance from the radar to the horizon only taking into account the height of the radar above sea-level, and the radius of the earth (approximately 6.4·103 km):

When H is small compared to , this can be approximated by:

[The percentage error, which increases roughly in proportion to the height, is less than 1% when H is less than 250 km.]

With this calculation, the horizon for a radar at a 1-mile (1.6 km) altitude is 89-mile (143 km). The radar horizon with an antenna height of 75 feet (23 m) over the ocean is 10-mile (16 km). However, since the pressure and water vapor content of the atmosphere varies with height, the path used by the radar beam is refracted by the change in density. With a standard atmosphere, electromagnetic waves are generally bent or refracted downward. This reduces the shadow zone, but causes errors in distance and height measuring. In practice, to find , one must be using a value of 8.5·103 km for the effective Earth's radius (4/3 of it), instead of the real one. [2]

So the equation becomes:

And for the same examples : the radar horizon for the radar at a 1-mile (1.6 km) altitude will be 102-mile (164 km) and the one at 75 feet (23 m) will be 12-mile (19 km).

Furthermore, layers with an inverse trend of temperature or humidity cause atmospheric ducting, which bends the beam downward or even traps radio waves so that they do not spread out vertically. This phenomenon occurs in two circumstances:

Ducting influence becomes stronger as frequency drops. Below 3 MHz, the whole volume of the air acts as a waveguide to fill in the radar shadow and also reduces radar sensitivity above the duct zone. Ducting fills in the shadow zone, extends the distance of the clutter zone, and can create reflections for low PRF radar that are beyond the instrumented range.

Limiting factors

Shadow Zone

Objects beyond Dh will be visible only if the height satisfies the following requirement:

where is the target height and is the target range. Objects below this height are in the radar shadow.

Clutter Zone

The Clutter Zone is where radar energy is in the lowest several thousand feet of air. This extends to a distance of about 120% of the radar horizon.

There are a large number of reflectors on the ground at these elevation angles. Prevailing winds of about 15 mile/hour cause these reflectors to move, and this wind stirs up smaller objects into the air. This interference is called clutter.

The clutter zone includes the littoral zone and terrain when operating on or near land.

A beam wide will illuminate millions of square feet of surface by the time the radar pulse reaches 10 miles (16 km). Targets are generally much smaller, so will be masked by clutter. Clutter reflections can create unwanted false targets.

The antenna for radar with no signal processing clutter-reduction improvement is not normally aimed near the ground to avoid overwhelming computers and users.

Moving Target Indication (MTI) can reduce clutter by about 35 dB. This allows objects as small as 1,000 square feet (93 m2) to be detected. Prevailing wind and weather can degrade MTI performance, and MTI introduces blind velocities. [3]

Pulse-Doppler radar can reduce clutter by over 60 dB, which can allow objects smaller than 1-square-foot (0.093 m2) to be detected without overloading computers and users. Systems using pulse-Doppler signal processing with speed rejection set above the wind speed have no clutter zone. This means that the clear region extends all the way to the ground.

Clear Region

The Clear Region is the zone that begins several kilometers beyond the radar horizon at low elevation angles.

The clear region is also the zone above low elevation angles with clear skies.

There is no clear region in areas with weather and heavy biological activity (rain, snow, hail, high winds, and migration).

Over-the-horizon

A number of radar systems have been developed that allow detection of targets in the shadow zone. These systems are collectively known as over-the-horizon radars. Three systems are generally used; the most common uses the ionosphere as a reflector and beams the signal skyward and then listens for the tiny signals that are returned from the sky, others use a bistatic arrangement with distant antennas looking for objects that pass between them, and a small number of systems use "creeping waves" that travel into the shadow zone.

See also

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

<span class="mw-page-title-main">Fresnel zone</span> Region of space between a transmitting and receiving antenna

A Fresnel zone, named after physicist Augustin-Jean Fresnel, is one of a series of confocal prolate ellipsoidal regions of space between and around a transmitter and a receiver. The primary wave will travel in a relative straight line from the transmitter to the receiver. Aberrant transmitted radio, sound, or light waves which are transmitted at the same time can follow slightly different paths before reaching a receiver, especially if there are obstructions or deflecting objects between the two. The two waves can arrive at the receiver at slightly different times and the aberrant wave may arrive out of phase with the primary wave due to the different path lengths. Depending on the magnitude of the phase difference between the two waves, the waves can interfere constructively or destructively. The size of the calculated Fresnel zone at any particular distance from the transmitter and receiver can help to predict whether obstructions or discontinuities along the path will cause significant interference.

<span class="mw-page-title-main">Horizon</span> Apparent curve that separates earth from sky

The horizon is the apparent curve that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This curve divides all viewing directions based on whether it intersects the relevant body's surface or not.

<span class="mw-page-title-main">Line-of-sight propagation</span> Characteristic of electromagnetic radiation

Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves can only travel in a direct visual path from the source to the receiver without obstacles. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.

<span class="mw-page-title-main">Weather radar</span> Radar used to locate and monitor meteorological conditions

Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type. Modern weather radars are mostly pulse-Doppler radars, capable of detecting the motion of rain droplets in addition to the intensity of the precipitation. Both types of data can be analyzed to determine the structure of storms and their potential to cause severe weather.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

<span class="mw-page-title-main">Continuous-wave radar</span> Type of radar where a known stable frequency continuous wave radio energy is transmitted

Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency.

Non-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone.

<span class="mw-page-title-main">Cobra Mist</span> Anglo-American experimental over-the-horizon radar station

Cobra Mist was the codename for an Anglo-American experimental over-the-horizon radar station at Orford Ness, England. It was known technically as AN/FPS-95 and sometimes referred to as System 441a; a reference to the project as a whole.

The JY-8 is a mobile 3D air surveillance, target acquisition and interception control radar system operating in the C-band. It can be employed as the main radar sensor for an automated tactical defence system, or can be used as an independent radar. The system uses advanced signal/data processor techniques and is fully solid state with the exception of the magnetrons and thyratrons of the transmitters. The general designer of JY-9 is the head of 38th Research Institute, academician of Chinese Academy of Sciences Mr. Wu Manqing, who is also the general designer of JY-9 and the general designer of the radar systems for KJ-2000 and KJ-200.

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

<span class="mw-page-title-main">Clutter (radar)</span> Unwanted echoes

Clutter is the unwanted return (echoes) in electronic systems, particularly in reference to radars. Such echoes are typically returned from ground, sea, rain, animals/insects, chaff and atmospheric turbulences, and can cause serious performance issues with radar systems. What one person considers to be unwanted clutter, another may consider to be a wanted target. However, targets usually refer to point scatterers and clutter to extended scatterers. The clutter may fill a volume or be confined to a surface. A knowledge of the volume or surface area illuminated is required to estimated the echo per unit volume, η, or echo per unit surface area, σ°.

<span class="mw-page-title-main">AN/FPS-17</span>

The AN/FPS-17 was a ground-based fixed-beam radar system that was installed at three locations worldwide, including Pirinçlik Air Base in south-eastern Turkey, Laredo, Texas and Shemya Island, Alaska.

Moving target indication (MTI) is a mode of operation of a radar to discriminate a target against the clutter. It describes a variety of techniques used for finding moving objects, like an aircraft, and filter out unmoving ones, like hills or trees. It contrasts with the modern stationary target indication (STI) technique, which uses details of the signal to directly determine the mechanical properties of the reflecting objects and thereby find targets whether they are moving or not.

Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses.

Scalloping is a radar phenomenon that reduces sensitivity for certain distance and velocity combinations.

Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common. Small fast moving objects can be identified close to terrain, near the sea surface, and inside storms.

Radar envelope is a critical Measure of Performance (MOP) identified in the Test and Evaluation Master Plan (TEMP). This is the volume of space where a radar system is required to reliably detect an object with a specific size and speed. This is one of the requirements that must be evaluated as part of the acceptance testing process.

A track algorithm is a radar and sonar performance enhancement strategy. Tracking algorithms provide the ability to predict future position of multiple moving objects based on the history of the individual positions being reported by sensor systems.

<span class="mw-page-title-main">Type 277 radar</span>

The Type 277 was a surface search and secondary aircraft early warning radar used by the Royal Navy and allies during World War II and the post-war era. It was a major update of the earlier Type 271 radar, offering much more power, better signal processing, new displays, and new antennas with greatly improved performance and much simpler mounting requirements. It allowed a radar with performance formerly found only on cruisers and battleships to be fitted even to the smallest corvettes. It began to replace the 271 in 1943 and was widespread by the end of the year.

References

  1. "Radar Principles" (PDF). University of Illinois.
  2. "Radar Line of Sight". Radartutorial. Retrieved November 27, 2011.
  3. Merill I Skolnik. Radar Handbook. McGraw-Hill.