This article needs additional citations for verification .(August 2019) |
Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common. Small fast moving objects can be identified close to terrain, near the sea surface, and inside storms.
This signal processing strategy is used in pulse-Doppler radar and multi-mode radar, which can then be pointed into regions containing a large number of slow-moving reflectors without overwhelming computer software and operators. Other signal processing strategies, like moving target indication, are more appropriate for benign clear blue sky environments.
It is also used to measure blood flow in Doppler ultrasonography.
Pulse-Doppler begins with coherent pulses transmitted through an antenna or transducer.
There is no modulation on the transmit pulse. Each pulse is a perfectly clean slice of a perfect coherent tone. The coherent tone is produced by the local oscillator.
There can be dozens of transmit pulses between the antenna and the reflector. In a hostile environment, there can be millions of other reflections from slow moving or stationary objects.
Transmit pulses are sent at the pulse repetition frequency.
Energy from the transmit pulses propagate through space until they are disrupted by reflectors. This disruption causes some of the transmit energy to be reflected back to the radar antenna or transducer, along with phase modulation caused by motion. The same tone that is used to generate the transmit pulses is also used to down-convert the received signals to baseband.
The reflected energy that has been down-converted to baseband is sampled.
Sampling begins after each transmit pulse is extinguished. This is the quiescent phase of the transmitter.
The quiescent phase is divided into equally spaced sample intervals. Samples are collected until the radar begins to fire another transmit pulse.
The pulse width of each sample matches the pulse width of the transmit pulse.
Enough samples must be taken to act as the input to the pulse-Doppler filter.
The local oscillator is split into two signals that are offset by 90 degrees, and each is mixed with the received signal. This mixing produces I(t) and Q(t). Phase coherence of the transmit signal is crucial for pulse-Doppler operation. In the diagram, the top shows phases of the wave-front in I/Q.
Each of the disks shown in this diagram represent a single sample taken from multiple transmit pulses, i.e. the same sample offset by the transmit period (1/PRF). This is the ambiguous range. Each sample would be similar but delayed by one or more pulse widths behind those that are shown. The signals in each sample are composed of signals from reflections at multiple ranges.
The diagram shows a counterclockwise spiral, which corresponds with inbound motion. This is up-Doppler. Down-Doppler would produce a clockwise spiral.
The process of digital sampling causes ringing in the filters that are used to remove reflected signals from slow moving objects. Sampling causes frequency sidelobes to be produced adjacent to the true signal for an input that is a pure tone. Windowing suppresses sidelobes induced by the sampling process.
The window is the number of samples that are used as an input to the filter.
The window process takes a series of complex constants and multiplies each sample by its corresponding window constant before the sample is applied to the filter.
Dolph–Chebychev windowing provides optimal processing sidelobe suppression.
Pulse-Doppler signal processing separates reflected signals into a number of frequency filters. There is a separate set of filters for each ambiguous range. The I and Q samples described above are used to begin the filtering process.
These samples are organized into the m × n matrix of time domain samples shown in the top half of the diagram.
Time domain samples are converted to frequency domain using a digital filter. This usually involves a fast Fourier transform (FFT). Side-lobes are produced during signal processing and a side-lobe suppression strategy, such as Dolph–Chebyshev window function, is required to reduce false alarms . [1]
All of the samples taken from the Sample 1 sample period form the input to the first set of filters. This is the first ambiguous range interval.
All of the samples taken from the Sample 2 sample period form the input to the second set of filters. This is the second ambiguous range interval.
This continues until samples taken from the Sample N sample period form the input to the last set of filters. This is the furthest ambiguous range interval.
The outcome is that each ambiguous range will produce a separate spectrum corresponding with all of the Doppler frequencies at that range.
The digital filter produces as many frequency outputs as the number of transmit pulses used for sampling. Production of one FFT with 1024 frequency outputs requires 1024 transmit pulses for input.
Detection processing for pulse-Doppler produces an ambiguous range and ambiguous velocity corresponding to one of the FFT outputs from one of the range samples. The reflections fall into filters corresponding to different frequencies that separate weather phenomenon, terrain, and aircraft into different velocity zones at each range.
Multiple simultaneous criteria are required before a signal can qualify as a detection.
Constant false alarm rate processing is used to examine each FFT output to detect signals. This is an adaptive process that adjusts automatically to background noise and environmental influences. There is a cell under test, where the surrounding cells are added together, multiplied by a constant, and used to establish a threshold.
The area surrounding the detection is examined to determine when the sign of the slope changes from to , which is the location of the detection (the local maximum). Detections for a single ambiguous range are sorted in order of descending amplitude.
Detection only covers the velocities that exceed the speed rejection setting. For example, if speed rejection is set to 75 mile/hour, then hail moving at 50 mile/hour inside a thunderstorm will not be detected, but an aircraft moving at 100 mile/hour will be detected.
For monopulse radar, signal processing is identical for the main lobe and sidelobe blanking channels. This identifies if the object location is in the main lobe or if it is offset above, below, left or right of the antenna beam.
Signals that satisfy all of these criteria are detections. These are sorted in order of descending amplitude (greatest to smallest).
The sorted detections are processed with a range ambiguity resolution algorithm to identify the true range and velocity of the target reflection.
Pulse Doppler radar may have 50 or more pulses between the radar and the reflector.
Pulse Doppler relies on medium pulse repetition frequency (PRF) from about 3 kHz to 30 kHz. Each transmit pulse is separated by 5 km to 50 km distance.
Range and speed of the target are folded by a modulo operation produced by the sampling process.
True range is found using the ambiguity resolution process.
The received signals from multiple PRF are compared using the range ambiguity resolution process.
The received signals are also compared using the frequency ambiguity resolution process.
The velocity of the reflector is determined by measuring the change in the range of reflector over a short span of time. This change in range is divided by the time span to determine velocity.
The velocity is also found using the Doppler frequency for the detection.
The two are subtracted, and the difference is averaged briefly.
If the average difference falls below a threshold, then the signal is a lock.
Lock means that the signal obeys Newtonian mechanics. Valid reflectors produce a lock. Invalid signals do not. Invalid reflections include things like helicopter blades, where Doppler does not correspond with the velocity that the vehicle is moving through the air. Invalid signals include microwaves made by sources separate from the transmitter, such as radar jamming and deception.
Reflectors that do not produce a lock signal cannot be tracked using the conventional technique. This means the feedback loop must be opened for objects like helicopters because the main body of the vehicle can be below the rejection velocity (only the blades are visible).
Transition to track is automatic for detections that produce a lock.
Transition to track is normally manual for non-Newtonian signal sources, but additional signal processing can be used to automate the process. Doppler velocity feedback must be disabled in the vicinity of the signal source to develop track data.
Track mode begins when a detection is sustained in a specific location.
During track, the XYZ position of the reflector is determined using a Cartesian coordinate system, and the XYZ velocity of the reflector is measured to predict future position. This is similar to the operation of a Kalman filter. The XYZ velocity is multiplied by the time between scans to determine each new aiming point for the antenna.
The radar uses a polar coordinate system. The track position is used to determine the left-right and up-down aiming point for the antenna position in the future. The antenna must be aimed at the position which will paint the target with maximum energy and not dragged behind it, otherwise the radar will be less effective.
The estimated distance to a reflector is compared with the measured distance. The difference is the distance error. Distance error is a feedback signal used to correct the position and velocity information for the track data.
Doppler frequency provides an additional feedback signal similar to the feedback used in a phase-locked loop. This improves the accuracy and reliability of the position and velocity information.
The amplitude and phase for the signal returned by the reflector is processed using monopulse radar techniques during track. This measures the offset between the antenna pointing position and the position of object. This is called angle error.
Each separate object must have its own independent track information. This is called track history, and this extends back for a brief span of time. This could be as much as an hour for airborne objects. The timespan for underwater objects may extend back a week or more.
Tracks where the object produces a detection are called active tracks.
The track is continued briefly in the absence of any detections. Tracks with no detections are coasted tracks. The velocity information is used to estimate antenna aiming positions. These are dropped after a brief period.
Each track has a surrounding capture volume, approximately the shape of a football. The radius of the capture volume is approximately the distance the fastest detectable vehicle can travel between successive scans of that volume, which is determined by the receiver band pass filter in pulse-Doppler radar.
New tracks that fall within the capture volume of a coasted track are cross correlated with the track history of the nearby coasted track. If position and speed are compatible, then the coasted track history is combined with the new track. This is called a join track.
A new track within the capture volume of an active track is called a split track.
Pulse-Doppler track information includes object area, errors, acceleration, and lock state, which are part of the decision logic involving join tracks and split tracks.
Other strategies are used for objects that do not satisfy Newtonian physics.
Users are generally presented with several displays that show information from track data and raw detected signals.
The plan position indicator and scrolling notifications are automatic and require no user action. The remaining displays activate to show additional information only when a track is selected by the user.
Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.
A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.
Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars. SAR is typically mounted on a moving platform, such as an aircraft or spacecraft, and has its origins in an advanced form of side looking airborne radar (SLAR). The distance the SAR device travels over a target during the period when the target scene is illuminated creates the large synthetic antenna aperture. Typically, the larger the aperture, the higher the image resolution will be, regardless of whether the aperture is physical or synthetic – this allows SAR to create high-resolution images with comparatively small physical antennas. For a fixed antenna size and orientation, objects which are further away remain illuminated longer – therefore SAR has the property of creating larger synthetic apertures for more distant objects, which results in a consistent spatial resolution over a range of viewing distances.
The pulse-repetition frequency (PRF) is the number of pulses of a repeating signal in a specific time unit. The term is used within a number of technical disciplines, notably radar.
In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency , . It represents the distortion of a returned pulse due to the receiver matched filter of the return from a moving target. The ambiguity function is defined by the properties of the pulse and of the filter, and not any particular target scenario.
A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.
Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency.
Passive radar is a class of radar systems that detect and track objects by processing reflections from non-cooperative sources of illumination in the environment, such as commercial broadcast and communications signals. It is a specific case of bistatic radar – passive bistatic radar (PBR) – which is a broad type also including the exploitation of cooperative and non-cooperative radar transmitters.
Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse.
A wind profiler is a type of weather observing equipment that uses radar or sound waves (SODAR) to detect the wind speed and direction at various elevations above the ground. Readings are made at each kilometer above sea level, up to the extent of the troposphere. Above this level there is inadequate water vapor present to produce a radar "bounce." The data synthesized from wind direction and speed is very useful to meteorological forecasting and timely reporting for flight planning. A twelve-hour history of data is available through NOAA websites.
A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.
The AN/FPS-17 was a ground-based fixed-beam radar system that was installed at three locations worldwide, including Pirinçlik Air Base in south-eastern Turkey, Laredo, Texas and Shemya Island, Alaska.
Radar engineering details are technical details pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.
Moving target indication (MTI) is a mode of operation of a radar to discriminate a target against the clutter. It describes a variety of techniques used for finding moving objects, like an aircraft, and filter out unmoving ones, like hills or trees. It contrasts with the modern stationary target indication (STI) technique, which uses details of the signal to directly determine the mechanical properties of the reflecting objects and thereby find targets whether they are moving or not.
Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses.
Frequency ambiguity resolution is used to find the true target velocity for medium pulse repetition frequency (PRF) radar systems. This is used with pulse-Doppler radar.
Ambiguity resolution is used to find the value of a measurement that requires modulo sampling.
Scalloping is a radar phenomenon that reduces sensitivity for certain distance and velocity combinations.
A track algorithm is a radar and sonar performance enhancement strategy. Tracking algorithms provide the ability to predict future position of multiple moving objects based on the history of the individual positions being reported by sensor systems.
High Resolution Wide Swath (HRWS) imaging is an important branch in synthetic aperture radar (SAR) imaging, a remote sensing technique capable of providing high resolution images independent of weather conditions and sunlight illumination. This makes SAR very attractive for the systematic observation of dynamic processes on the Earth's surface, which is useful for environmental monitoring, earth resource mapping and military systems.