Radar jamming and deception is a form of electronic countermeasures that intentionally sends out radio frequency signals to interfere with the operation of radar by saturating its receiver with noise or false information. Concepts that blanket the radar with signals so its display cannot be read are normally known as jamming, while systems that produce confusing or contradictory signals are known as deception, but it is also common for all such systems to be referred to as jamming.
There are two general classes of radar jamming, mechanical and electronic. Mechanical jamming entails reflecting enemy radio signals in various ways to provide false or misleading target signals to the radar operator. Electronic jamming works by transmitting additional radio signals towards enemy receivers, making it difficult to detect real target signals, or take advantage of known behaviors of automated systems like radar lock-on to confuse the system.
Various counter-countermeasures can sometimes help radar operators maintain target detection despite jamming.
Mechanical jamming is caused by devices that reflect or re-reflect radar energy back to the radar to produce false target returns on the operator's scope. Mechanical jamming devices include chaff, corner reflectors, and decoys.
Electronic jamming is a form of electronic warfare where jammers radiate interfering signals toward an enemy's radar, blocking the receiver with highly concentrated energy signals. The two main technique styles are noise techniques and repeater techniques. The three types of noise jamming are spot, sweep, and barrage.
The burn-through range is the distance from the radar at which the jamming is ineffective. When a target is within this range, the radar receives an adequate target skin return to track it. The burn through range is a function of the target RCS (Radar cross-section), jamming ERP (Effective radiated power), the radars ERP and required J/S (for the jamming to be effective).
In some cases, jamming of either type may be caused by friendly sources. Inadvertent mechanical jamming is fairly common because it is indiscriminate and affects any nearby radars, hostile or not. Electronic jamming can also be inadvertently caused by friendly sources, usually powerful EW platforms operating within range of the affected radar.
For protective jamming, a small radar cross section of the protected aircraft will improve the jamming efficiency (higher J/S).[ citation needed ] A lower RCS also reduces the "burn-through" range. Stealth technologies like radiation-absorbent materials can be used to reduce the return of a target.[ citation needed ]
While not usually caused by the enemy, interference can greatly impede the ability of an operator to track. Interference occurs when two radars in relatively close proximity (how close they need to be depends on the power of the radars) are operating on the same frequency. This will cause "running rabbits", a visual phenomenon that can severely clutter up a radar display scope with useless data. Interference is not that common between ground radars, however, because they are not usually placed close enough together. It is more likely that some sort of airborne radar system is inadvertently causing the interference—especially when two or more countries are involved.
The interference between airborne radars referred to above can sometimes (usually) be eliminated by frequency-shifting transmitters.
The other interference often experienced is between the aircraft's own electronic transmitters, i.e. transponders, being picked up by its radar. This interference is eliminated by suppressing the radar's reception for the duration of the transponder's transmission. Instead of "bright-light" rabbits across the display, one would observe very small black dots. Because the external radar causing the transponder to respond is generally not synchronised with your own radar (i.e. different pulse-repetition frequencies), these black dots appear randomly across the display and the operator sees through and around them. The returning image may be much larger than the "dot" or "hole", as it has become known, anyway. Keeping the transponder's pulse widths very narrow and mode of operation (single pulse rather than multi-pulse) becomes a crucial factor.
The external radar could, in theory, come from an aircraft flying alongside your own, or from space. Another factor often overlooked is to reduce the sensitivity of one's own transponder to external radars; i.e., ensure that the transponder's threshold is high. In this way it will only respond to nearby radars—which, after all, should be friendly.
One should also reduce the power output of the transponder in like manner.
Jamming radar for the purpose of defeating police radar guns is more simple than military-grade radar jamming. [5] The laws about jamming police radars vary by jurisdiction.
The jamming of bat sonar by certain tiger moth species has been confirmed. [6] This can be seen as nature's equivalent of radar jamming. Bats are found to change their emission lengths to defeat jamming. [7]
Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
Barrage jamming is an electronic warfare technique that attempts to blind ("jam") radar systems by filling the display with noise, rendering the broadcaster's blip invisible on the display, and often those in the nearby area as well. "Barrage" refers to systems that send signals in many bands of frequencies compared to the bandwidth of any single radar. This allows the jammer to jam multiple radars at once, and reduces or eliminates the need for adjustments to respond to any single radar.
Electromagnetic warfare or electronic warfare (EW) is warfare involving the use of the electromagnetic spectrum or directed energy to control the spectrum, attack an enemy, or impede enemy operations. The purpose of electromagnetic warfare is to deny the opponent the advantage of—and ensure friendly unimpeded access to—the EM spectrum. Electromagnetic warfare can be applied from air, sea, land, or space by crewed and uncrewed systems, and can target communication, radar, or other military and civilian assets.
An active electronically scanned array (AESA) is a type of phased array antenna, which is a computer-controlled antenna array in which the beam of radio waves can be electronically steered to point in different directions without moving the antenna. In the AESA, each antenna element is connected to a small solid-state transmit/receive module (TRM) under the control of a computer, which performs the functions of a transmitter and/or receiver for the antenna. This contrasts with a passive electronically scanned array (PESA), in which all the antenna elements are connected to a single transmitter and/or receiver through phase shifters under the control of the computer. AESA's main use is in radar, and these are known as active phased array radar (APAR).
An electronic countermeasure (ECM) is an electrical or electronic device designed to trick or deceive radar, sonar, or other detection systems, like infrared (IR) or lasers. It may be used both offensively and defensively to deny targeting information to an enemy. The system may make many separate targets appear to the enemy, or make the real target appear to disappear or move about randomly. It is used effectively to protect aircraft from guided missiles. Most air forces use ECM to protect their aircraft from attack. It has also been deployed by military ships and recently on some advanced tanks to fool laser/IR guided missiles. It is frequently coupled with stealth advances so that the ECM systems have an easier job. Offensive ECM often takes the form of jamming. Self-protecting (defensive) ECM includes using blip enhancement and jamming of missile terminal homers.
The BAE Systems Mark 36 Super Rapid Bloom Offboard Countermeasures Chaff and Decoy Launching System is an American short-range decoy launching system (DLS) that launches radar or infrared decoys from naval vessels to foil incoming anti-ship missiles. The decoys present false signals and interference to the attacking missiles' guidance and fire-control systems.
A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.
Electronic counter-countermeasures (ECCM) is a part of electronic warfare which includes a variety of practices which attempt to reduce or eliminate the effect of electronic countermeasures (ECM) on electronic sensors aboard vehicles, ships and aircraft and weapons such as missiles. ECCM is also known as electronic protective measures (EPM), chiefly in Europe. In practice, EPM often means resistance to jamming. A more detailed description defines it as the electronic warfare operations taken by a radar to offset the enemy's countermeasure.
A low-probability-of-intercept radar (LPIR) is a radar employing measures to avoid detection by passive radar detection equipment while it is searching for a target or engaged in target tracking. This characteristic is desirable in a radar because it allows finding and tracking an opponent without alerting them to the radar's presence. This also protects the radar installation from anti-radiation missiles (ARMs).
Gee-H, sometimes written G-H or GEE-H, was a radio navigation system developed by Britain during World War II to aid RAF Bomber Command. The name refers to the system's use of the earlier Gee equipment, as well as its use of the "H principle" or "twin-range principle" of location determination. Its official name was AMES Type 100.
Chaff, originally called Window or Düppel, is a radar countermeasure involving the dispersal of thin strips of aluminium, metallized glass fiber, or plastic. Dispersed chaff produces a large radar cross section intended to blind or disrupt radar systems.
An infrared countermeasure (IRCM) is a device designed to protect aircraft from infrared homing missiles by confusing the missiles' infrared guidance system so that they miss their target. Heat-seeking missiles were responsible for about 80% of air losses in Operation Desert Storm. The most common method of infrared countermeasure is deploying flares, as the heat produced by the flares creates hundreds of targets for the missile.
A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.
The AN/ALE-55 Fiber-Optic Towed Decoy, or ALE-55, is an RF countermeasure under development by BAE Systems Electronic Solutions for the F/A-18E/F Super Hornet.
The AN/FPS-16 is a highly accurate ground-based monopulse single object tracking radar (SOTR), used extensively by the NASA crewed space program, the U.S. Air Force and the U.S. Army. The accuracy of Radar Set AN/FPS-16 is such that the position data obtained from point-source targets has azimuth and elevation angular errors of less than 0.1 milliradian and range errors of less than 5 yards (5 m) with a signal-to-noise ratio of 20 decibels or greater.
In radar systems, the blip-to-scan ratio, or blip/scan, is the ratio of the number of times a target appears on a radar display to the number of times it theoretically could be displayed. Alternately it can be defined as the ratio of the number of scans in which an accurate return is received to the total number of scans.
A missile approach warningsystem (MAW) is part of the avionics package on some military aircraft. A sensor detects attacking missiles. Its automatic warning cues the pilot to make a defensive maneuver and deploy the available countermeasures to disrupt missile tracking.
The EuroDASS Praetorian DASS is an integral part of Eurofighter Typhoon defensive Aid Sub-System (DASS) providing threat assessment, aircraft protection and support measures in extremely hostile and severe environments. As the DASS is fully integrated, it does not require additional pods that take up weapon stations or would influence the aircraft's aerodynamic performance. In addition the modular nature of the DASS simplifies future upgrades and allows each partner nation or export customer the option to tailor the DASS to their individual needs.
Range gate pull-off (RGPO) is an electronic warfare technique used to break radar lock-on. The basic concept is to produce a pulse of radio signal similar to the one that the target radar would produce when it reflects off the aircraft. This second pulse is then increasingly delayed in time so that the radar's range gate begins to follow the false pulse instead of the real reflection, pulling it off the target.
Angle deception jamming is an electronic warfare technique used against conical scanning radar systems. It generates a false signal that fools the radar into believing the target is to one side of the boresight, causing the radar to "walk away" from the target and break its radar lock-on. It is also known as angle walk-off, angle stealing, or inverse con-scan.