Barrage jamming

Last updated
This image shows the effect of four carcinotron-carrying aircraft on a typical 1950s early warning radar. The aircraft are located at the 4 and 6 o'clock positions, which are completely filled with noise. Carcinotron jamming a pulse radar unit.png
This image shows the effect of four carcinotron-carrying aircraft on a typical 1950s early warning radar. The aircraft are located at the 4 and 6 o'clock positions, which are completely filled with noise.

Barrage jamming is an electronic warfare technique that attempts to blind ("jam") radar systems by filling the display with noise, rendering the broadcaster's blip invisible on the display, and often those in the nearby area as well. "Barrage" refers to systems that send signals in many bands of frequencies compared to the bandwidth of any single radar. This allows the jammer to jam multiple radars at once, and reduces or eliminates the need for adjustments to respond to any single radar.

Early radar systems typically operated on a single frequency, and could only change that frequency by changing internal electronics. Against these radars, it was possible to use conventional radio sets to send out signals on the same band, causing the radar display to be filled with noise whenever the antenna was pointed in the general direction of the jammer. However, given that each individual radar would be operating on different frequencies, this "spot jamming" technique required multiple radio sets in order to jam more than one radar at a time, and true wide-band barrage jamming was very difficult.

Early barrage jammers in World War II used photomultiplier tubes to amplify a wideband noise source, [1] An improved approach appeared with the introduction of the carcinotron in the early 1950s, a vacuum tube that generates microwaves whose frequency can be adjusted across a very wide band simply by changing the input voltage. A single carcinotron could be swept through the entire bandwidth of any potential radar network, jamming all of the radars in such rapid sequence that it appeared to be constant noise on all frequencies at all times. A downside to this approach is that the signal only spends a brief period of time at any one radar's frequency; depending on the scanning rate, the radar may only be jammed during certain periods, but if the rate is increased to offset this, the amount of noise in any one pulse period is reduced. More complex jammers can scan only the bands it sees being used, improving its effectiveness.

Barrage jamming was extremely effective against 1950s radars, to the point where there was some belief that the carcinotron might render ground-based radars useless, especially in the early warning radar role. By the 1960s a number of techniques had been introduced to combat barrage jamming. Frequency agile radars, which change their frequency from pulse to pulse, force the jammer spread its signal across the entire bandwidth, ensuring the signal is diluted. Combining this with extremely powerful signals and highly focused antennas allowed new radars to overpower the jammers, "burning through" the jamming. Simple techniques, like turning off the receivers when the antenna was pointed close to the jammer, allowed the radar to continue tracking other targets. The use of phased array antennas and signal processing techniques that reduced sidelobes also improved performance.

Barrage jammers also have the disadvantage that they are very easy to detect using a wideband receiver. This can be used to track the jammer using a variety of techniques. A well developed instance of this was deployed by the RAF in their RX12874 network, which could track jammer-carrying aircraft with accuracy equal to a radar. More generally, a barrage jammer's signal is so easy to receive that it makes an excellent early warning signal on its own.

See also

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

<span class="mw-page-title-main">Spread spectrum</span> Spreading the frequency domain of a signal

In telecommunication, especially radio communication, spread spectrum are techniques by which a signal generated with a particular bandwidth is deliberately spread in the frequency domain over a wider frequency band. Spread-spectrum techniques are used for the establishment of secure communications, increasing resistance to natural interference, noise, and jamming, to prevent detection, to limit power flux density, and to enable multiple-access communications.

<span class="mw-page-title-main">Active electronically scanned array</span> Type of phased array radar

An active electronically scanned array (AESA) is a type of phased array antenna, which is a computer-controlled antenna array in which the beam of radio waves can be electronically steered to point in different directions without moving the antenna. In the AESA, each antenna element is connected to a small solid-state transmit/receive module (TRM) under the control of a computer, which performs the functions of a transmitter and/or receiver for the antenna. This contrasts with a passive electronically scanned array (PESA), in which all the antenna elements are connected to a single transmitter and/or receiver through phase shifters under the control of the computer. AESA's main use is in radar, and these are known as active phased array radar (APAR).

Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The improvement compared with omnidirectional reception/transmission is known as the directivity of the array.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

Electronic counter-countermeasures (ECCM) is a part of electronic warfare which includes a variety of practices which attempt to reduce or eliminate the effect of electronic countermeasures (ECM) on electronic sensors aboard vehicles, ships and aircraft and weapons such as missiles. ECCM is also known as electronic protective measures (EPM), chiefly in Europe. In practice, EPM often means resistance to jamming. A more detailed description defines it as the electronic warfare operations taken by a radar to offset the enemy's countermeasure.

A low-probability-of-intercept radar (LPIR) is a radar employing measures to avoid detection by passive radar detection equipment while it is searching for a target or engaged in target tracking. This characteristic is desirable in a radar because it allows finding and tracking an opponent without alerting them to the radar's presence. This also protects the radar installation from anti-radiation missiles (ARMs).

Radar jamming and deception is a form of electronic countermeasures that intentionally sends out radio frequency signals to interfere with the operation of radar by saturating its receiver with noise or false information. Concepts that blanket the radar with signals so its display cannot be read are normally known as jamming, while systems that produce confusing or contradictory signals are known as deception, but it is also common for all such systems to be referred to as jamming.

Linesman/Mediator was a dual-purpose civil and military radar network in the United Kingdom between the 1960s and 1984. The military side (Linesman) was replaced by the Improved United Kingdom Air Defence Ground Environment (IUKADGE), while the civilian side (Mediator) became the modern public-private National Air Traffic Services (NATS).

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Frequency agility is the ability of a radar system to quickly shift its operating frequency to account for atmospheric effects, jamming, mutual interference with friendly sources, or to make it more difficult to locate the radar broadcaster through radio direction finding. The term can also be applied to other fields, including lasers or traditional radio transceivers using frequency-division multiplexing, but it remains most closely associated with the radar field and these other roles generally use the more generic term "frequency hopping".

<span class="mw-page-title-main">AMES Type 82</span> Cold War-era British medium-range 3D radar

The AMES Type 82, also widely known by its rainbow codename Orange Yeoman, was an S-band 3D radar built by the Marconi Company and used by the Royal Air Force (RAF), initially for tactical control and later for air traffic control (ATC).

Angle deception jamming is an electronic warfare technique used against conical scanning radar systems. It generates a false signal that fools the radar into believing the target is to one side of the boresight, causing the radar to "walk away" from the target and break its radar lock-on. It is also known as angle walk-off, angle stealing, or inverse con-scan.

<span class="mw-page-title-main">RX12874</span> Military radar detector

RX12874, also known as the Passive Detection System (PDS) and by its nickname "Winkle", was a radar detector system used as part of the Royal Air Force's Linesman/Mediator radar network until the early 1980s. Winkle passed out of service along with the rest of the Linesman system as the IUKADGE network replaced it.

<span class="mw-page-title-main">AMES Type 85</span> Cold War-era British early warning radar

The AMES Type 85, also known by its rainbow code Blue Yeoman, was an extremely powerful early warning (EW) and fighter direction (GCI) radar used by the Royal Air Force (RAF) as part of the Linesman/Mediator radar network. First proposed in early 1958, it was eleven years before they became operational in late 1968, by which time they were already considered obsolete. The Type 85 remained the RAF's primary air defense radar until it was replaced by Marconi Martello sets in the late-1980s as part of the new IUKADGE network.

The railSAR, also known as the ultra-wideband Foliage Penetration Synthetic Aperture Radar, is a rail-guided, low-frequency impulse radar system that can detect and discern target objects hidden behind foliage. It was designed and developed by the U.S. Army Research Laboratory (ARL) in the early 1990s in order to demonstrate the capabilities of an airborne SAR for foliage and ground penetration. However, since conducting accurate, repeatable measurements on an airborne platform was both challenging and expensive, the railSAR was built on the rooftop of a four-story building within the Army Research Laboratory compound along a 104-meter laser-leveled track.

The Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar is a vehicle-mounted, forward-looking ground-penetrating radar (FLGPR) system designed to detect buried or hidden explosive hazards. It was developed by the U.S. Army Research Laboratory (ARL) in 2016 as part of a long generation of ultra-wideband (UWB) and synthetic aperture radar (SAR) systems created to combat buried landmines and IEDs. Past iterations include the railSAR, the boomSAR, and the SIRE radar.

The AMES Type 84, also known as the Microwave Early Warning or MEW, was a 23 cm wavelength early warning radar used by the Royal Air Force (RAF) as part of the Linesman/Mediator radar network. Operating in the L-band gave it improved performance in rain and hail, where the primary AMES Type 85 radar's performance dropped off. It operated beside the Type 85 and RX12874 in Linesman, and moved to the UKADGE system in the 1980s before being replaced during UKADGE upgrades in the early 1990s.

The AR-320 is a 3D early warning radar developed by the UK's Plessey in partnership with US-based ITT-Gilfillan. The system combined the receiver electronics, computer systems and displays of the earlier Plessey AR-3D with a Gilfillan-developed transmitter and planar array antenna from their S320 series. The main advantage over the AR-3D was the ability to shift frequencies to provide a level of frequency agility and thus improve its resistance to jamming.

References

  1. "Photomultiplier Handbook" (PDF). Archived (PDF) from the original on 2022-10-09.