Last updated

Effective radiated power (ERP), synonymous with equivalent radiated power, is an IEEE standardized definition of directional radio frequency (RF) power, such as that emitted by a radio transmitter. It is the total power in watts that would have to be radiated by a half-wave dipole antenna to give the same radiation intensity (signal strength or power flux density in watts per square meter) as the actual source antenna at a distant receiver located in the direction of the antenna's strongest beam (main lobe). ERP measures the combination of the power emitted by the transmitter and the ability of the antenna to direct that power in a given direction. It is equal to the input power to the antenna multiplied by the gain of the antenna. It is used in electronics and telecommunications, particularly in broadcasting to quantify the apparent power of a broadcasting station experienced by listeners in its reception area.

## Contents

An alternate parameter that measures the same thing is effective isotropic radiated power (EIRP). Effective isotropic radiated power is the hypothetical power that would have to be radiated by an isotropic antenna to give the same ("equivalent") signal strength as the actual source antenna in the direction of the antenna's strongest beam. The difference between EIRP and ERP is that ERP compares the actual antenna to a half-wave dipole antenna, while EIRP compares it to a theoretical isotropic antenna. Since a half-wave dipole antenna has a gain of 1.64 (or 2.15 dB) compared to an isotropic radiator, if ERP and EIRP are expressed in watts their relation is

${\displaystyle \mathrm {EIRP(W)} =1.64\cdot \mathrm {ERP(W)} }$

If they are expressed in decibels

${\displaystyle \mathrm {EIRP(dB)} =\mathrm {ERP(dB)} +2.15}$

## Definitions

In spite of the names, ERP and EIRP do not measure transmitter power, or total power radiated by the antenna, they are just a measure of signal strength along the main lobe. They give no information about power radiated in other directions, or total power. ERP and EIRP are always greater than the actual total power radiated by the antenna.

The difference between ERP and EIRP is that antenna gain has traditionally been measured in two different units, comparing the antenna to two different standard antennas; an isotropic antenna and a half-wave dipole antenna:

• Isotropic gain is the ratio of the power density ${\displaystyle S_{\text{max}}}$ (signal strength in watts per square meter) received at a point far from the antenna (in the far field) in the direction of its maximum radiation (main lobe), to the power ${\displaystyle S_{\text{max,isotropic}}}$ received at the same point from a hypothetical lossless isotropic antenna, which radiates equal power in all directions
${\displaystyle \mathrm {G} _{\text{i}}={S_{\text{max}} \over S_{\text{max,isotropic}}}}$
Gain is often expressed in logarithmic units of decibels (dB). The decibel gain relative to an isotropic antenna (dBi) is given by
${\displaystyle \mathrm {G} {\text{(dBi)}}=10\log {S_{\text{max}} \over S_{\text{max,isotropic}}}}$
• Dipole gain is the ratio of the power density received from the antenna in the direction of its maximum radiation to the power density ${\displaystyle S_{\text{max,dipole}}}$ received from a lossless half-wave dipole antenna in the direction of its maximum radiation
${\displaystyle \mathrm {G} _{\text{d}}={S_{\text{max}} \over S_{\text{max,dipole}}}}$
The decibel gain relative to a dipole (dBd) is given by
${\displaystyle \mathrm {G} {\text{(dBd)}}=10\log {S_{\text{max}} \over S_{\text{max,dipole}}}}$

In contrast to an isotropic antenna, the dipole has a "donut-shaped" radiation pattern, its radiated power is maximum in directions perpendicular to the antenna, declining to zero on the antenna axis. Since the radiation of the dipole is concentrated in horizontal directions, the gain of a half-wave dipole is greater than that of an isotropic antenna. The isotropic gain of a half-wave dipole is 1.64, or in decibels 10 log 1.64 = 2.15 dBi, so

${\displaystyle G_{\text{i}}=1.64G_{\text{d}}}$

In decibels

${\displaystyle G{\text{(dBi)}}=G{\text{(dBd)}}+2.15}$

The two measures EIRP and ERP are based on the two different standard antennas above: [1] [3] [2] [4]

• EIRP is defined as the RMS power input in watts required to a lossless isotropic antenna to give the same maximum power density far from the antenna as the actual transmitter. It is equal to the power input to the transmitter's antenna multiplied by the isotropic antenna gain
${\displaystyle \mathrm {EIRP} =G_{\text{i}}P_{\text{in}}}$
The ERP and EIRP are also often expressed in decibels (dB). The input power in decibels is usually calculated with comparison to a reference level of one watt (W): ${\displaystyle P_{\text{in}}\mathrm {(dBW)} =10\log P_{\text{in}}}$. Since multiplication of two factors is equivalent to addition of their decibel values
${\displaystyle \mathrm {EIRP(dBW)} =G{\text{(dBi)}}+P_{\text{in}}\mathrm {(dBW)} }$
• ERP is defined as the RMS power input in watts required to a lossless half-wave dipole antenna to give the same maximum power density far from the antenna as the actual transmitter. It is equal to the power input to the transmitter's antenna multiplied by the antenna gain relative to a half-wave dipole
${\displaystyle \mathrm {ERP} =G_{\text{d}}P_{\text{in}}}$
In decibels
${\displaystyle \mathrm {ERP(dBW)} =G{\text{(dBd)}}+P_{\text{in}}\mathrm {(dBW)} }$

Since the two definitions of gain only differ by a constant factor, so do ERP and EIRP

${\displaystyle \mathrm {EIRP(W)} =1.64\cdot \mathrm {ERP(W)} }$

In decibels

${\displaystyle \mathrm {EIRP(dBW)} =\mathrm {ERP} {\text{(dBW)}}+2.15}$

## Relation to transmitter output power

The transmitter is usually connected to the antenna through a transmission line. Since the transmission line may have significant losses ${\displaystyle L}$, the power applied to the antenna is usually less than the output power of the transmitter ${\displaystyle P_{\text{TX}}}$. The relation of ERP and EIRP to transmitter output power is

${\displaystyle \mathrm {EIRP(dBW)} =P_{\text{TX}}\mathrm {(dBW)} -L\mathrm {(dB)} +G{\text{(dBi)}}}$
${\displaystyle \mathrm {ERP(dBW)} =P_{\text{TX}}\mathrm {(dBW)} -L\mathrm {(dB)} +G{\text{(dBi)}}-2.15}$

Losses in the antenna itself are included in the gain.

## Relation to signal strength

If the signal path is in free space (line-of-sight propagation with no multipath) the signal strength (power flux density in watts per square meter) ${\displaystyle S}$ of the radio signal on the main lobe axis at any particular distance ${\displaystyle r}$ from the antenna can be calculated from the EIRP or ERP. Since an isotropic antenna radiates equal power flux density over a sphere centered on the antenna, and the area of a sphere with radius ${\displaystyle r}$ is ${\displaystyle A=4\pi r^{2}}$ then

${\displaystyle S(r)={\mathrm {EIRP} \over 4\pi r^{2}}}$

Since ${\displaystyle \mathrm {EIRP} =\mathrm {ERP} *1.64}$,

${\displaystyle S(r)={\mathrm {0.41*ERP} \over \pi r^{2}}}$

However if the radio waves travel by ground wave as is typical for medium or longwave broadcasting, skywave, or indirect paths play a part in transmission, the waves will suffer additional attenuation which depends on the terrain between the antennas, so these formulas are not valid.

Because ERP is calculated as antenna gain (in a given direction) as compared with the maximum directivity of a half-wave dipole antenna, it creates a mathematically virtual effective dipole antenna oriented in the direction of the receiver. In other words, a notional receiver in a given direction from the transmitter would receive the same power if the source were replaced with an ideal dipole oriented with maximum directivity and matched polarization towards the receiver and with an antenna input power equal to the ERP. The receiver would not be able to determine a difference. Maximum directivity of an ideal half-wave dipole is a constant, i.e., 0 dBd = 2.15 dBi. Therefore, ERP is always 2.15 dB less than EIRP. The ideal dipole antenna could be further replaced by an isotropic radiator (a purely mathematical device which cannot exist in the real world), and the receiver cannot know the difference so long as the input power is increased by 2.15 dB.

Unfortunately, the distinction between dBd and dBi is often left unstated and the reader is sometimes forced to infer which was used. For example, a Yagi–Uda antenna is constructed from several dipoles arranged at precise intervals to create better energy focusing (directivity) than a simple dipole. Since it is constructed from dipoles, often its antenna gain is expressed in dBd, but listed only as dB. Obviously this ambiguity is undesirable with respect to engineering specifications. A Yagi–Uda antenna's maximum directivity is 8.77 dBd = 10.92 dBi. Its gain necessarily must be less than this by the factor η, which must be negative in units of dB. Neither ERP nor EIRP can be calculated without knowledge of the power accepted by the antenna, i.e., it is not correct to use units of dBd or dBi with ERP and EIRP. Let us assume a 100-watt (20 dBW) transmitter with losses of 6 dB prior to the antenna. ERP < 22.77dBW and EIRP < 24.92dBW, both less than ideal by η in dB. Assuming that the receiver is in the first side-lobe of the transmitting antenna, and each value is further reduced by 7.2 dB, which is the decrease in directivity from the main to side-lobe of a Yagi-Uda. Therefore, anywhere along the side-lobe direction from this transmitter, a blind receiver could not tell the difference if a Yagi-Uda was replaced with either an ideal dipole (oriented towards the receiver) or an isotropic radiator with antenna input power increased by 1.57 dB. [5]

## Polarization

Polarization has not been taken into account so far, but it must be properly clarified. When considering the dipole radiator previously we assumed that it was perfectly aligned with the receiver. Now assume, however, that the receiving antenna is circularly polarized, and there will be a minimum 3 dB polarization loss regardless of antenna orientation. If the receiver is also a dipole, it is possible to align it orthogonally to the transmitter such that theoretically zero energy is received. However, this polarization loss is not accounted for in the calculation of ERP or EIRP. Rather, the receiving system designer must account for this loss as appropriate. For example, a cellular telephone tower has a fixed linear polarization, but the mobile handset must function well at any arbitrary orientation. Therefore, a handset design might provide dual polarization receive on the handset so that captured energy is maximized regardless of orientation, or the designer might use a circularly polarized antenna and account for the extra 3 dB of loss with amplification.

## FM example

For example, an FM radio station which advertises that it has 100,000 watts of power actually has 100,000 watts ERP, and not an actual 100,000-watt transmitter. The transmitter power output (TPO) of such a station typically may be 10,000 to 20,000 watts, with a gain factor of 5 to 10 (5× to 10×, or 7 to 10 dB). In most antenna designs, gain is realized primarily by concentrating power toward the horizontal plane and suppressing it at upward and downward angles, through the use of phased arrays of antenna elements. The distribution of power versus elevation angle is known as the vertical pattern. When an antenna is also directional horizontally, gain and ERP will vary with azimuth (compass direction). Rather than the average power over all directions, it is the apparent power in the direction of the antenna's main lobe that is quoted as a station's ERP (this statement is just another way of stating the definition of ERP). This is particularly applicable to the huge ERPs reported for shortwave broadcasting stations, which use very narrow beam widths to get their signals across continents and oceans.

### United States regulatory usage

ERP for FM radio in the United States is always relative to a theoretical reference half-wave dipole antenna. (That is, when calculating ERP, the most direct approach is to work with antenna gain in dBd). To deal with antenna polarization, the Federal Communications Commission (FCC) lists ERP in both the horizontal and vertical measurements for FM and TV. Horizontal is the standard for both, but if the vertical ERP is larger it will be used instead.

The maximum ERP for US FM broadcasting is usually 100,000 watts (FM Zone II) or 50,000 watts (in the generally more densely populated Zones I and I-A), though exact restrictions vary depending on the class of license and the antenna height above average terrain (HAAT). [6] Some stations have been grandfathered in or, very infrequently, been given a waiver, and can exceed normal restrictions.

## Microwave band issues

For most microwave systems, a completely non-directional isotropic antenna (one which radiates equally and perfectly well in every direction a physical impossibility) is used as a reference antenna, and then one speaks of EIRP (effective isotropic radiated power) rather than ERP. This includes satellite transponders, radar, and other systems which use microwave dishes and reflectors rather than dipole-style antennas.

## Lower-frequency issues

In the case of medium wave (AM) stations in the United States, power limits are set to the actual transmitter power output, and ERP is not used in normal calculations. Omnidirectional antennas used by a number of stations radiate the signal equally in all directions. Directional arrays are used to protect co- or adjacent channel stations, usually at night, but some run directionally 24 hours. While antenna efficiency and ground conductivity are taken into account when designing such an array, the FCC database shows the station's transmitter power output, not ERP.

According to the Institution of Electrical Engineers (UK), ERP is often used as a general reference term for radiated power, but strictly speaking should only used when the antenna is a half-wave dipole, [7] and is used when referring to FM transmission. [8]

### EMRP

Effective monopole radiated power (EMRP) may be used in Europe, particularly in relation to medium wave broadcasting antennas. This is the same as ERP, except that a short vertical antenna (i.e. a short monopole) is used as the reference antenna instead of a half-wave dipole. [7]

### CMF

Cymomotive force (CMF) is an alternative term used for expressing radiation intensity in volts, particularly at the lower frequencies. [7] It is used in Australian legislation regulating AM broadcasting services, which describes it as: "for a transmitter, [it] means the product, expressed in volts, of: (a) the electric field strength at a given point in space, due to the operation of the transmitter; and (b) the distance of that point from the transmitter’s antenna". [9]

It relates to AM broadcasting only, and expresses the field strength in "microvolts per metre at a distance of 1 kilometre from the transmitting antenna". [8]

## HAAT

The height above average terrain for VHF and higher frequencies is extremely important when considering ERP, as the signal coverage (broadcast range) produced by a given ERP dramatically increases with antenna height. Because of this, it is possible for a station of only a few hundred watts ERP to cover more area than a station of a few thousand watts ERP, if its signal travels above obstructions on the ground.

## Related Research Articles

The decibel is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 or root-power ratio of 10120.

In the field of antenna design the term radiation pattern refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other source.

In electromagnetics, an antenna's power gain or simply gain is a key performance number which combines the antenna's directivity and electrical efficiency. In a transmitting antenna, the gain describes how well the antenna converts input power into radio waves headed in a specified direction. In a receiving antenna, the gain describes how well the antenna converts radio waves arriving from a specified direction into electrical power. When no direction is specified, gain is understood to refer to the peak value of the gain, the gain in the direction of the antenna's main lobe. A plot of the gain as a function of direction is called the gain pattern or radiation pattern.

In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct the radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently-sized reflectors can be used.

In radio transmission, transmitter power output (TPO) is the actual amount of power of radio frequency (RF) energy that a transmitter produces at its output.

A directional antenna or beam antenna is an antenna which radiates or receives greater power in specific directions allowing increased performance and reduced interference from unwanted sources. Directional antennas provide increased performance over dipole antennas—or omnidirectional antennas in general—when greater concentration of radiation in a certain direction is desired.

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets.

In electromagnetics and antenna theory, antenna aperture, effective area, or receiving cross section, is a measure of how effective an antenna is at receiving the power of electromagnetic radiation. The aperture is defined as the area, oriented perpendicular to the direction of an incoming electromagnetic wave, which would intercept the same amount of power from that wave as is produced by the antenna receiving it. Assume a plane wave in a particular direction has an irradiance or power flux density; this is the amount of power passing through a unit area of one square meter. Then if an antenna delivers watts to the load connected to its output terminals when irradiated by a uniform field of power density watts per square meter, the antenna's aperture for the direction of that plane wave is in square meters, given by:

The air interface, or access mode, is the communication link between the two stations in mobile or wireless communication. The air interface involves both the physical and data link layers of the OSI model for a connection.

The Friis transmission formula is used in telecommunications engineering, equating the power at the terminals of a receive antenna as the product of power density of the incident wave and the effective aperture of the receiving antenna under idealized conditions given another antenna some distance away transmitting a known amount of power. The formula was presented first by Danish-American radio engineer Harald T. Friis in 1946. The formula is sometimes referenced as the Friis transmission equation.

An isotropic radiator is a theoretical point source of electromagnetic or sound waves which radiates the same intensity of radiation in all directions. It has no preferred direction of radiation. It radiates uniformly in all directions over a sphere centred on the source. Isotropic radiators are used as reference radiators with which other sources are compared, for example in determining the gain of antennas. A coherent isotropic radiator of electromagnetic waves is theoretically impossible, but incoherent radiators can be built. An isotropic sound radiator is possible because sound is a longitudinal wave.

A monopole antenna is a class of radio antenna consisting of a straight rod-shaped conductor, often mounted perpendicularly over some type of conductive surface, called a ground plane. The driving signal from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the lower end of the monopole and the ground plane. One side of the antenna feedline is attached to the lower end of the monopole, and the other side is attached to the ground plane, which is often the Earth. This contrasts with a dipole antenna which consists of two identical rod conductors, with the signal from the transmitter applied between the two halves of the antenna.

Antenna measurement techniques refers to the testing of antennas to ensure that the antenna meets specifications or simply to characterize it. Typical parameters of antennas are gain, bandwidth, radiation pattern, beamwidth, polarization, and impedance.

In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It measures the power density the antenna radiates in the direction of its strongest emission, versus the power density radiated by an ideal isotropic radiator radiating the same total power.

The Lee model for area-to-area mode is a radio propagation model that operates around 900 MHz. Built as two different modes, this model includes an adjustment factor that can be adjusted to make the model more flexible to different regions of propagation.

The Lee model for point-to-point mode is a radio propagation model that operates around 900 MHz. Built as two different modes, this model includes an adjustment factor that can be adjusted to make the model more flexible to different regions of propagation.

In radio systems, many different antenna types are used with specialized properties for particular applications. Antennas can be classified in various ways. The list below groups together antennas under common operating principles, following the way antennas are classified in many engineering textbooks.

## References

1. Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2007). National Association of Broadcasters Engineering Handbook, 10th Ed. Elsevier. p. 1632. ISBN   978-1136034107.
2. Huang, Yi; Boyle, Kevin (2008). Antennas: From Theory to Practice. John Wiley and Sons. pp. 117–118. ISBN   978-0470772928.
3. Seybold, John S. (2005). Introduction to RF Propagation. John Wiley and Sons. p. 292. ISBN   0471743682.
4. Weik, Martin H. (2012). Communications Standard Dictionary. Springer Science and Business Media. p. 327. ISBN   978-1461566724.
5. Cheng, David K. (1992). Field and Wave Electromagnetics, 2nd Ed. Addison-Wesley. pp. 648–650.
6. 47 CFR 73.211
7. Barclay, Les, ed. (2003). Propagation of Radiowaves. Volume 2 of Electromagnetics and Radar, IET Digital Library. Institution of Electrical Engineers (contributor). London: Institution of Engineering and Technology. p. 13-14. ISBN   978-0-85296-102-5 . Retrieved 14 September 2020.
8. "3MTR may get a power increase". radioinfo. 24 November 2011. Retrieved 14 September 2020.
9. "Broadcasting Services (Technical Planning) Guidelines 2017". Federal Register of Legislation. Australian Government. 28 September 2017. Retrieved 14 September 2020. Text was copied from this source, which is available under a Attribution 4.0 International (CC BY 4.0) licence.