Ultra low frequency

Last updated
Ultra low frequency
Frequency range
0.3 to 3 kHz
Wavelength range
1,000 to 100 km
Listening to 500 Hz signal of Ambrose Channel pilot cable in 1920 Ambrose Channel pilot cable in action.PNG
Listening to 500 Hz signal of Ambrose Channel pilot cable in 1920

Ultra low frequency (ULF) is the ITU designation [1] for the frequency range of electromagnetic waves between 300 hertz and 3 kilohertz, corresponding to wavelengths between 1,000 to 100 km. In magnetosphere science and seismology, alternative definitions are usually given, including ranges from 1 mHz to 100 Hz, [2] 1 mHz to 1 Hz, [3] and 10 mHz to 10 Hz. [4]

Contents

Many types of waves in the ULF frequency band can be observed in the magnetosphere and on the ground. These waves represent important physical processes in the near-Earth plasma environment. The speed of the ULF waves is often associated with the Alfvén velocity that depends on the ambient magnetic field and plasma mass density.

This band is used for communications in mines, as it can penetrate the earth. [5]

Earthquakes

Some monitoring stations have reported that earthquakes are sometimes preceded by a spike in ULF activity. A remarkable example of this occurred before the 1989 Loma Prieta earthquake in California, [6] although a subsequent study indicates that this was little more than a sensor malfunction. [7] On December 9, 2010, geoscientists announced that the DEMETER satellite observed a dramatic increase in ULF radio waves over Haiti in the month before the magnitude 7.0 Mw 2010 earthquake. [8] Researchers are attempting to learn more about this correlation to find out whether this method can be used as part of an early warning system for earthquakes.

Earth mode communications

ULF has been used by the military for secure communications through the ground. NATO AGARD publications from the 1960s detailed many such systems, although it is possible that the published papers left a lot unsaid about what actually was developed secretly for defense purposes. Communications through the ground using conduction fields is known as "Earth-Mode" communications and was first used in World War I. Radio amateurs and electronics hobbyists have used this mode for limited range communications using audio power amplifiers connected to widely spaced electrode pairs hammered into the soil. At the receiving end, the signal is detected as a weak electric current between a further pair of electrodes. Using weak signal reception methods with PC-based DSP filtering with extremely narrow bandwidths, it is possible to receive signals at a range of a few kilometers with a transmitting power of 10100 W and electrode spacing of around 1050 m.[ citation needed ]

See also

Related Research Articles

Ground waves are radio waves propagating parallel to and adjacent to the surface of the Earth, following the curvature of the Earth. This radiation is known as Norton surface wave, or more properly Norton ground wave, because ground waves in radio propagation are not confined to the surface.

<span class="mw-page-title-main">High-frequency Active Auroral Research Program</span> Project to analyze the ionosphere

The High-frequency Active Auroral Research Program (HAARP) was initiated as an ionospheric research program jointly funded by the U.S. Air Force, the U.S. Navy, the University of Alaska Fairbanks, and the Defense Advanced Research Projects Agency (DARPA). It was designed and built by BAE Advanced Technologies. Its original purpose was to analyze the ionosphere and investigate the potential for developing ionospheric enhancement technology for radio communications and surveillance. Since 2015 it has been operated by the University of Alaska Fairbanks.

<span class="mw-page-title-main">Very low frequency</span> The range 3–30 kHz of the electromagnetic spectrum

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3–30 kHz, corresponding to wavelengths from 100 to 10 km, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters. Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations and for secure military communication. Since VLF waves can penetrate at least 40 meters (131 ft) into saltwater, they are used for military communication with submarines.

Low frequency (LF) is the ITU designation for radio frequencies (RF) in the range of 30–300 kHz. Since its wavelengths range from 10–1 km, respectively, it is also known as the kilometre band or kilometre wave.

<span class="mw-page-title-main">Medium frequency</span> The range 300-3000 kHz of the electromagnetic spectrum

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometer. Frequencies immediately below MF are denoted low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

<span class="mw-page-title-main">Longwave</span> Radio transmission using wavelengths above 1000 m

In radio, longwave, long wave or long-wave, and commonly abbreviated LW, refers to parts of the radio spectrum with wavelengths longer than what was originally called the medium-wave broadcasting band. The term is historic, dating from the early 20th century, when the radio spectrum was considered to consist of longwave (LW), medium-wave (MW), and short-wave (SW) radio bands. Most modern radio systems and devices use wavelengths which would then have been considered 'ultra-short'.

<span class="mw-page-title-main">Whistler (radio)</span> Very low frequency EM waves generated by lightning

A whistler is a very low frequency (VLF) electromagnetic (radio) wave generated by lightning. Frequencies of terrestrial whistlers are 1 kHz to 30 kHz, with a maximum amplitude usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at audio frequencies, and can be converted to audio using a suitable receiver. They are produced by lightning strikes where the impulse travels along the Earth's magnetic field lines from one hemisphere to the other. They undergo dispersion of several kHz due to the slower velocity of the lower frequencies through the plasma environments of the ionosphere and magnetosphere. Thus they are perceived as a descending tone which can last for a few seconds. The study of whistlers categorizes them into Pure Note, Diffuse, 2-Hop, and Echo Train types.

<span class="mw-page-title-main">High frequency</span> The range 3-30 MHz of the electromagnetic spectrum

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (3.95–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

<span class="mw-page-title-main">Extremely low frequency</span> The range 3-30 Hz of the electromagnetic spectrum

Extremely low frequency (ELF) is the ITU designation for electromagnetic radiation with frequencies from 3 to 30 Hz, and corresponding wavelengths of 100,000 to 10,000 kilometers, respectively. In atmospheric science, an alternative definition is usually given, from 3 Hz to 3 kHz. In the related magnetosphere science, the lower frequency electromagnetic oscillations are considered to lie in the ULF range, which is thus also defined differently from the ITU radio bands.

Communication with submarines is a field within military communications that presents technical challenges and requires specialized technology. Because radio waves do not travel well through good electrical conductors like salt water, submerged submarines are cut off from radio communication with their command authorities at ordinary radio frequencies. Submarines can surface and raise an antenna above the sea level, or float a tethered buoy carrying an antenna, then use ordinary radio transmissions, however this makes them vulnerable to detection by anti-submarine warfare forces. Early submarines during World War II mostly traveled on the surface because of their limited underwater speed and endurance, and dove mainly to evade immediate threats or for stealthy approach to their targets. During the Cold War, however, nuclear-powered submarines were developed that could stay submerged for months. In the event of a nuclear war, submerged ballistic missile submarines have to be ordered quickly to launch their missiles. Transmitting messages to these submarines is an active area of research. Very low frequency (VLF) radio waves can penetrate seawater a few hundred feet (10–40 meters), and many navies use powerful shore VLF transmitters for submarine communications. A few nations have built transmitters which use extremely low frequency (ELF) radio waves, which can penetrate seawater to reach submarines at operating depths, but these require huge antennas. Other techniques that have been used include sonar and blue lasers.

<span class="mw-page-title-main">Plasmasphere</span> Region of Earths magnetosphere consisting of cool plasma

The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere. The outer boundary of the plasmasphere is known as the plasmapause, which is defined by an order of magnitude drop in plasma density. In 1963 American scientist Don Carpenter and Soviet astronomer Konstantin Gringauz proved the plasmasphere and plasmapause's existence from the analysis of very low frequency (VLF) whistler wave data. Traditionally, the plasmasphere has been regarded as a well behaved cold plasma with particle motion dominated entirely by the geomagnetic field and, hence, co-rotating with the Earth.

An auroral chorus is a series of electromagnetic waves at frequencies which resemble chirps, whistles, and quasi-musical sounds in predominantly rising tones when played as pressure waves (sound), which are created by geomagnetic storms also responsible for the auroras. The sounds last approximately 0.1 to 1.0 seconds. Other auroral sounds includes hissing, swishing, rustling and cracking.

<span class="mw-page-title-main">Ground dipole</span> Radio antenna that radiates extremely low frequency electromagnetic waves

In radio communication, a ground dipole, also referred to as an earth dipole antenna, transmission line antenna, and in technical literature as a horizontal electric dipole (HED), is a huge, specialized type of radio antenna that radiates extremely low frequency (ELF) electromagnetic waves. It is the only type of transmitting antenna that can radiate practical amounts of power in the frequency range of 3 Hz to 3 kHz, commonly called ELF waves. A ground dipole consists of two ground electrodes buried in the earth, separated by tens to hundreds of kilometers, linked by overhead transmission lines to a power plant transmitter located between them. Alternating current electricity flows in a giant loop between the electrodes through the ground, radiating ELF waves, so the ground is part of the antenna. To be most effective, ground dipoles must be located over certain types of underground rock formations. The idea was proposed by U.S. Dept. of Defense physicist Nicholas Christofilos in 1959.

<span class="mw-page-title-main">Radio atmospheric signal</span> Broadband electromagnetic impulse

A radio atmospheric signal or sferic is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges. Sferics may propagate from their lightning source without major attenuation in the Earth–ionosphere waveguide, and can be received thousands of kilometres from their source. On a time-domain plot, a sferic may appear as a single high-amplitude spike in the time-domain data. On a spectrogram, a sferic appears as a vertical stripe that may extend from a few kHz to several tens of kHz, depending on atmospheric conditions.

The Earth–ionosphere waveguide refers to the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves as a large waveguide.

Robert A. Helliwell was an electrical engineer and professor at Stanford University. He was one of the pioneering scientists in the study of whistlers and related ionospheric phenomena.

<span class="mw-page-title-main">Project Sanguine</span>

Project Sanguine was a U.S. Navy project, proposed in 1968 for communication with submerged submarines using extremely low frequency (ELF) radio waves. The originally proposed system, hardened to survive a nuclear attack, would have required a giant antenna covering two fifths of the state of Wisconsin. Because of protests and potential environmental impact, the proposed system was never implemented. A smaller, less hardened system called Project ELF consisting of two linked ELF transmitters located at Clam Lake, Wisconsin 46°05′05.6″N90°55′03.7″W and Republic, Michigan 46°20′10.1″N87°53′04.6″W was built beginning in 1982 and operated from 1989 until 2004. The system transmitted at a frequency of 76 Hz. At ELF frequencies the bandwidth of the transmission is very small, so the system could only send short coded text messages at a very low data rate. These signals were used to summon specific vessels to the surface to receive longer operational orders by ordinary radio or satellite communication.

<span class="mw-page-title-main">ISEE-1</span> NASA satellite of the Explorer program

The ISEE-1 was an Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">Sainte-Assise transmitter</span> Radio transmitter in France

The Sainte-Assise transmitter is a very low frequency (VLF) radio transmitter and military installation located on the grounds of the Château de Sainte-Assise in the communes of Seine-Port, Boissise-la-Bertrand, and Cesson in the Seine-et-Marne department of the Île-de-France region of France. The transmitter's original equipment was inaugurated on 9 January 1921, at the time being the most powerful radio transmitter on Earth. On 26 November 1921 the first French radio program was transmitted from Sainte-Assise. In 1965 the transmitter was used to send VLF signals to FR-1, the first French satellite. Since 1998 the French Navy has used the transmitter to communicate with submerged submarines.

<span class="mw-page-title-main">Dynamics Explorer 1</span> NASA satellite of the Explorer program

Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

References

  1. "Rec. ITU-R V.431-7, Nomenclature of the frequency and wavelength bands used in telecommunications" (PDF). ITU. Archived from the original (PDF) on 31 October 2013. Retrieved 20 February 2013.
  2. V. A. Pilipenko, "ULF waves on the ground and in space", Journal of Atmospheric and Terrestrial Physics, Volume 52, Issue 12, December 1990, pp. 1193–1209, ISSN   0021-9169, doi : 10.1016/0021-9169(90)90087-4.
  3. T. Bösinger and S. L. Shalimov, "On ULF Signatures of Lightning Discharges", Space Science Reviews, Volume 137, Issue 1, pp. 521–532, June 2008, doi : 10.1007/s11214-008-9333-4.
  4. O. Molchanov, A. Schekotov, E. Fedorov, G. Belyaev, and E. Gordeev, "Preseismic ULF electromagnetic effect from observation at Kamchatka", Natural Hazards and Earth System Sciences, Volume 3, pp. 203–209, 2003
  5. HF and Lower Frequency Radiation - Introduction Archived 2005-11-09 at the Wayback Machine
  6. Fraser-Smith, Antony C.; Bernardi, A.; McGill, P. R.; Ladd, M. E.; Helliwell, R. A.; Villard, Jr., O. G. (August 1990). "Low-Frequency Magnetic Field Measurements Near the Epicenter of the Ms 7.1 Loma Prieta Earthquake" (PDF). Geophysical Research Letters . 17 (9): 1465–1468. Bibcode:1990GeoRL..17.1465F. doi:10.1029/GL017i009p01465. ISSN   0094-8276. OCLC   1795290 . Retrieved December 18, 2010.
  7. Thomas, J. N.; Love, J. J.; Johnston, M. J. S. (April 2009). "On the reported magnetic precursor of the 1989 Loma Prieta earthquake". Physics of the Earth and Planetary Interiors . 173 (3–4): 207–215. Bibcode:2009PEPI..173..207T. doi:10.1016/j.pepi.2008.11.014.
  8. KentuckyFC (December 9, 2010). "Spacecraft Saw ULF Radio Emissions over Haiti before January Quake". Cambridge, Massachusetts: MIT Technology Review . Retrieved December 18, 2010.

External articles