Through-the-earth mine communications

Last updated

Through-the-Earth (TTE) signalling is a type of radio signalling used in mines and caves that uses low-frequency waves to penetrate dirt and rock, which are opaque to higher-frequency conventional radio signals.

Radio Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking and satellite communication among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver receives radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless radio remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

Mining The extraction of valuable minerals or other geological materials from the earth

Mining is the extraction of valuable minerals or other geological materials from the Earth, usually from an ore body, lode, vein, seam, reef or placer deposit. These deposits form a mineralized package that is of economic interest to the miner.

Cave Natural underground space large enough for a human to enter

A cave or cavern is a natural void in the ground, specifically a space large enough for a human to enter. Caves often form by the weathering of rock and often extend deep underground. The word cave can also refer to much smaller openings such as sea caves, rock shelters, and grottos, though strictly speaking a cave is exogene, meaning it is deeper than its opening is wide, and a rock shelter is endogene.

Contents

In mining, these lower-frequency signals can be relayed underground through various antennas, repeater or mesh configurations, but communication is restricted to line of sight to these antenna and repeaters systems.

Antenna (radio) electrical device which converts electric power into radio waves, and vice versa

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Repeater Relay station

In telecommunications, a repeater is an electronic device that receives a signal and retransmits it. Repeaters are used to extend transmissions so that the signal can cover longer distances or be received on the other side of an obstruction. Some types of repeaters broadcast an identical signal, but alter its method of transmission, for example, on another frequency or baud rate.

Overview

Through-the-Earth transmission can overcome these restrictions by using ultra-low frequency (300–3000 Hz) signals, which can travel through several hundred feet of rock strata. The antenna cable can be located on the surface only at a mine site, and provide signal coverage to the mine. The antenna may be placed in a "loop" formation around the perimeter of the mine site (or wherever coverage is needed) for systems using magnetic fields to carry signals. Systems that use electric fields as the signal carrier are not subject to this limitation. Transmissions propagate through rock strata which is used as the medium to carry the ultra-low-frequency signals. This is important in mining applications, particularly after any significant incident, such as fire or explosion, which would destroy much of the fixed communication infrastructure underground.

Ultra low frequency The range 300-3000 Hz of the electromagnetic spectrum

Ultra low frequency (ULF) is the ITU designation for the frequency range of electromagnetic waves between 300 hertz and 3 kilohertz. In magnetosphere science and seismology, alternative definitions are usually given, including ranges from 1 mHz to 100 Hz, 1 mHz to 1 Hz, and 10 mHz to 10 Hz. Frequencies above 3 Hz in atmospheric science are usually assigned to the ELF range.

If the terrain makes a loop surface antenna impractical to install, then the antenna can be installed underground or a non-magnetic field type carrier may be used. But because the signal travels through rock, the antenna does not need to run into all parts of the mine to achieve mine wide signal coverage, thus minimizing the risk of damage during an incident.[ citation needed ]

Cave radios

Portable magnetic-loop cave radios have been used by cavers for two-way communication and cave surveying since the 1960s. [1] In a typical setup the transmitting loop, consisting of many turns of copper wire, is oriented horizontally within the cave using a spirit level, and driven at a few kHz. Though such a small antenna is a very poor radiator of propagating radio waves at this low frequency, its local AC magnetic field is strong enough to be detected by a similar receiving antenna up to a few hundred meters away. The received signal's strength and its dependence on orientation of the receiving coil yields approximate distance and directional information.

Caving Recreational pastime of exploring cave systems

Caving – also known as spelunking in the United States and Canada and potholing in the United Kingdom and Ireland – is the recreational pastime of exploring wild cave systems. In contrast, speleology is the scientific study of caves and the cave environment.

Personal emergency device

There are several systems that have been recently developed. One system is known as the PED System, where PED is an acronym for personal emergency device. [2] Initially developed after a mining disaster in Australia at Moura No. 4 Coal Mine in 1986, [3] and further developed after the Moura No. 2 Coal Mine explosion in 1994 [4] where the need for a communication system to survive major incidents underground was identified in the inquiries into the disasters.

Australia Country in Oceania

Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania, and numerous smaller islands. It is the largest country in Oceania and the world's sixth-largest country by total area. The neighbouring countries are Papua New Guinea, Indonesia, and East Timor to the north; the Solomon Islands and Vanuatu to the north-east; and New Zealand to the south-east. The population of 26 million is highly urbanised and heavily concentrated on the eastern seaboard. Australia's capital is Canberra, and its largest city is Sydney. The country's other major metropolitan areas are Melbourne, Brisbane, Perth, and Adelaide.

Moura, Queensland Town in Queensland, Australia

Moura is a small town and locality in the Shire of Banana in Central Queensland, Australia. It services the surrounding coal mining and rural activities. It is situated approximately 65 kilometres (40 mi) west of Biloela on the Dawson Highway, 186 kilometres (116 mi) west of the port city of Gladstone, and 171 kilometres (106 mi) south west of Rockhampton. At the 2011census, Moura had a population of 1,899 people.

PED is a one-way text paging device, with wide use in Australia, as well as installations in the United States, China, Canada, Mongolia, Chile, Tanzania, and Sweden. [5] Australian company Mine Site Technologies began the development of PED in 1987, and it became commercially available and Mine Safety & Health Administration (MSHA) approved in 1991. [5] The best documented use of PED during a mine emergency is from the Willow Creek Mine Fire in 1998 in Utah, where it was able to quickly alert miners underground of the need to evacuate before toxic fumes from the fire filled the mine. Reports of this use can be seen on the MSHA website. [6] [7]

Development

Emerging technologies have recently been developed such as the Rescue Dog Emergency Through the Earth Communication System [8] developed by E-Spectrum Technologies. The Rescue Dog is a two-way extended-range portable through-the-Earth solution that was developed in the US in cooperation with The National Institute for Occupational Safety and Health (or NIOSH) [9] which does not rely on large loop surface antennas for signal transmission. New non-portable systems have also been developed by companies such as Lockheed Martin for use in emergency chambers to provide post-accident, two-way, emergency voice and text communications independent of surface or in-mine infrastructure.

New technologies

A new wireless "Miner Lifeline" telecommunication technology is being tested in 2012 at the West Virginia Robinson Run mine (recent production 6,000,000 short tons (5,400,000 t) per year of coal using 600 miners). The system supports voice, text, or SOS sent on a "bubble" of magnetic waves, and "can move more than 1,500 feet (460 m) up or down and 2,000 feet (610 m) laterally, arriving in less than a minute." [10]

See also

Related Research Articles

Inductive coupling

In electrical engineering, two conductors are said to be inductively coupled or magnetically coupled when they are configured such that a change in current through one wire induces a voltage across the ends of the other wire through electromagnetic induction. A changing current through the first wire creates a changing magnetic field around it by Ampere's circuital law. The changing magnetic field induces an electromotive force in the second wire by Faraday's law of induction. The amount of inductive coupling between two conductors is measured by their mutual inductance.

Transmitter Electronic device that emits radio waves

In electronics and telecommunications a transmitter or radio transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

Radio wave type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At 300 GHz, the corresponding wavelength is 1 mm, and at 30 Hz is 10,000 km. Like all other electromagnetic waves, radio waves travel at the speed of light in vacuum. They are generated by electric charges undergoing acceleration, such as time varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects.

Very low frequency The range 3-30 kHz of the electromagnetic spectrum

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3 to 30 kilohertz (kHz), corresponding to wavelengths from 100 to 10 kilometers, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters. Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations and for secure military communication. Since VLF waves can penetrate at least 40 meters (120 ft) into saltwater, they are used for military communication with submarines.

Medium frequency The range 300-3000 kHz of the electromagnetic spectrum

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometer. Frequencies immediately below MF are denoted low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

High frequency The range 3-30 MHz of the electromagnetic spectrum

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (2.31–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

Miner person who works in mining

A miner is a person who extracts ore, coal, or other mineral from the earth through mining. There are two senses in which the term is used. In its narrowest sense, a miner is someone who works at the rock face; cutting, blasting, or otherwise working and removing the rock. In a broader sense, a "miner" is anyone working within a mine, not just a worker at the rock face.

Balun

A balun is an electrical device that converts between a balanced signal and an unbalanced signal. A balun can take many forms and may include devices that also transform impedances but need not do so. Transformer baluns can also be used to connect lines of differing impedance. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than ignoring, common mode signals.

Mining engineering Engineering discipline that involves the practice, the theory, the science, the technology, and applicatIon of extracting and processing minerals from a naturally occurring environment

A mining engineer is somebody who is academically accomplished in the engineering discipline of extraction of minerals from underneath the ground, above the ground or on it. Mining engineering is associated with many other disciplines, such as mineral processing, exploration, excavation, geology, and metallurgy, geotechnical engineering and surveying. A mining engineer may manage any phase of mining operations – from exploration and discovery of the mineral resource, through feasibility study, mine design, development of plans, production and operations to mine closure.

Direction finding

Direction finding (DF), or radio direction finding (RDF), is the measurement of the direction from which a received signal was transmitted. This can refer to radio or other forms of wireless communication, including radar signals detection and monitoring (ELINT/ESM). By combining the direction information from two or more suitably spaced receivers, the source of a transmission may be located via triangulation. Radio direction finding is used in the navigation of ships and aircraft, to locate emergency transmitters for search and rescue, for tracking wildlife, and to locate illegal or interfering transmitters. RDF was important in combating German threats during both the World War II Battle of Britain and the long running Battle of the Atlantic. In the former, the Air Ministry also used RDF to locate its own fighter groups and vector them to detected German raids.

Mine Safety and Health Administration

The Mine Safety and Health Administration (MSHA) is an agency of the United States Department of Labor which administers the provisions of the Federal Mine Safety and Health Act of 1977 to enforce compliance with mandatory safety and health standards as a means to eliminate fatal accidents, to reduce the frequency and severity of nonfatal accidents, to minimize health hazards, and to promote improved safety and health conditions in the nation's mines. MSHA carries out the mandates of the Mine Act at all mining and mineral processing operations in the United States, regardless of size, number of employees, commodity mined, or method of extraction. David Zatezalo is Assistant Secretary of Labor for Mine Safety and Health, and the head of MSHA.

Loop antenna type of radio antenna

A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor usually fed by a balanced source or feeding a balanced load. Within this physical description there are two distinct antenna types. The large self-resonant loop antenna has a circumference close to one wavelength of the operating frequency and so is resonant at that frequency. This category also includes smaller loops 5% to 30% of a wavelength in circumference, which use a capacitor to make them resonant. These antennas are used for both transmission and reception. In contrast, small loop antennas less than 1% of a wavelength in size are very inefficient radiators, and so are only used for reception. An example is the ferrite (loopstick) antenna used in most AM broadcast radios. Loop antennas have a dipole radiation pattern; they are most sensitive to radio waves in two broad lobes in opposite directions, 180° apart. Due to this directional pattern they are used for radio direction finding (RDF), to locate the position of a transmitter.

Leaky feeder

A leaky feeder is a communications system used in underground mining and other tunnel environments. Manufacturers and cabling professionals use the term "radiating cable" as this implies that the cable is designed to radiate: something that coaxial cable is not generally supposed to do.

In telecommunications, the coverage of a radio station is the geographic area where the station can communicate. Broadcasters and telecommunications companies frequently produce coverage maps to indicate to users the station's intended service area. Coverage depends on several factors, such as orography and buildings, technology, radio frequency and perhaps most importantly for two-way telecommunications the sensitivity and transmit efficiency of the consumer equipment. Some frequencies provide better regional coverage, while other frequencies penetrate better through obstacles, such as buildings in cities.

Ground dipole

In radio communication, a ground dipole, also referred to as an earth dipole antenna, transmission line antenna, and in technical literature as a horizontal electric dipole (HED), is a huge, specialized type of radio antenna that radiates extremely low frequency (ELF) electromagnetic waves. It is the only type of transmitting antenna that can radiate practical amounts of power in the frequency range of 3 Hz to 3 kHz, commonly called ELF waves A ground dipole consists of two ground electrodes buried in the earth, separated by tens to hundreds of kilometers, linked by overhead transmission lines to a power plant transmitter located between them. Alternating current electricity flows in a giant loop between the electrodes through the ground, radiating ELF waves, so the ground is part of the antenna. To be most effective, ground dipoles must be located over certain types of underground rock formations. The idea was proposed by U.S. Dept. of Defense physicist Nicholas Christofilos in 1959.

Radio-frequency (RF) engineering is a subset of electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or utilize signals within the radio band, the frequency range of about 20 kHz up to 300 GHz.

A magnetoquasistatic field is a class of electromagnetic field in which a slowly oscillating magnetic field is dominant. A magnetoquasistatic field is typically generated by low-frequency induction from a magnetic dipole or a current loop. The magnetic near-field of such an emitter behaves differently from the more commonly used far-field electromagnetic radiation. At low frequencies the rate of change of the instantaneous field strength with each cycle is relatively slow, giving rise to the name "magneto-quasistatic". The near field or quasistatic region typically extends no more than a wavelength from the antenna, and within this region the electric and magnetic fields are approximately decoupled.

References

  1. David Gibson, "Cave Radiolocation" ISBN   978-1-4457-7105-2
  2. "Mine Safety and Health Administration (MSHA) - Emergency Communication and Tracking Committee - Underground Communication and Tracking Systems - Description of MSHA Approved Technologies" (PDF). US Mine Safety and Health Administration. 2007. Retrieved 2012-09-30.
  3. http://www.dme.qld.gov.au/mines/moura_no4.cfm
  4. http://www.dme.qld.gov.au/mines/moura_no2.cfm
  5. 1 2 http://www.msha.gov/regs/comments/06-722/transcripts/Presentations/MST.pdf
  6. http://www.msha.gov/disasterhistory/WCREEK/CHRONO/C0.HTM
  7. http://www.msha.gov/disasterhistory/WCREEK/WCREEK.HTM
  8. https://dl.dropbox.com/u/34622965/Rescue%20Dog%20Web%20Brochure.pdf
  9. http://www.homeandsmallbusinessnetwork.info/niosh/mining/mineract/contracts/200-2008-26818.htm
  10. National Geographic. 221 (5): 37. May 2012.Missing or empty |title= (help)