This article needs additional citations for verification .(February 2013) |
An isotropic radiator is a theoretical point source of waves which radiates the same intensity of radiation in all directions. [1] [2] [3] [4] It may be based on sound waves or electromagnetic waves, in which case it is also known as an isotropic antenna. It has no preferred direction of radiation, i.e., it radiates uniformly in all directions over a sphere centred on the source.
Isotropic radiators are used as reference radiators with which other sources are compared, for example in determining the gain of antennas. A coherent isotropic radiator of electromagnetic waves is theoretically impossible, but incoherent radiators can be built. An isotropic sound radiator is possible because sound is a longitudinal wave.
The term isotropic radiation means a radiation field which has the same intensity in all directions at each point; thus an isotropic radiator does not produce isotropic radiation. [5] [6]
This section needs additional citations for verification .(September 2017) |
In physics, an isotropic radiator is a point radiation or sound source. At a distance, the Sun is an isotropic radiator of electromagnetic radiation.
The radiation field of an isotropic radiator in empty space can be found from conservation of energy. The waves travel in straight lines away from the source point, in the radial direction . Since it has no preferred direction of radiation, the power density [7] of the waves at any point does not depend on the angular direction , but only on the distance from the source. Assuming it is located in empty space where there is nothing to absorb the waves, the power striking a spherical surface enclosing the radiator, with the radiator at center, regardless of the radius , must be the total power in watts emitted by the source. Since the power density in watts per square meter striking each point of the sphere is the same, it must equal the radiated power divided by the surface area of the sphere [3] [8]
Thus the power density radiated by an isotropic radiator decreases with the inverse square of the distance from the source.
The term isotropic radiation is not usually used for the radiation from an isotropic radiator because it has a different meaning in physics. In thermodynamics it refers to the electromagnetic radiation pattern which would be found in a region at thermodynamic equilibrium, as in a black thermal cavity at a constant temperature. [5] In a cavity at equilibrium the power density of radiation is the same in every direction and every point in the cavity, meaning that the amount of power passing through a unit surface is constant at any location, and with the surface oriented in any direction. [6] [5] This radiation field is different from that of an isotropic radiator, in which the direction of power flow is everywhere away from the source point, and decreases with the inverse square of distance from it.
In antenna theory, an isotropic antenna is a hypothetical antenna radiating the same intensity of radio waves in all directions. [1] It thus is said to have a directivity of 0 dBi (dB relative to isotropic) in all directions. Since it is entirely non-directional, it serves as a hypothetical worst-case against which directional antennas may be compared.
In reality, a coherent isotropic radiator of linear polarization can be shown to be impossible. [9] [lower-alpha 1] Its radiation field could not be consistent with the Helmholtz wave equation (derived from Maxwell's equations) in all directions simultaneously. Consider a large sphere surrounding the hypothetical point source, in the far field of the radiation pattern so that at that radius the wave over a reasonable area is essentially planar. In the far field the electric (and magnetic) field of a plane wave in free space is always perpendicular to the direction of propagation of the wave. So the electric field would have to be tangent to the surface of the sphere everywhere, and continuous along that surface. However the hairy ball theorem shows that a continuous vector field tangent to the surface of a sphere must fall to zero at one or more points on the sphere, which is inconsistent with the assumption of an isotropic radiator with linear polarization.
Incoherent isotropic antennas are possible and do not violate Maxwell's equations.[ citation needed ]
Even though an exactly isotropic antenna cannot exist in practice, it is used as a base of comparison to calculate the directivity of actual antennas. Antenna gain which is equal to the antenna's directivity multiplied by the antenna efficiency, is defined as the ratio of the intensity (power per unit area) of the radio power received at a given distance from the antenna (in the direction of maximum radiation) to the intensity received from a perfect lossless isotropic antenna at the same distance. This is called isotropic gain Gain is often expressed in logarithmic units called decibels (dB). When gain is calculated with respect to an isotropic antenna, these are called decibels isotropic (dBi) The gain of any perfectly efficient antenna averaged over all directions is unity, or 0 dBi.
In EMF measurement applications, an isotropic receiver (also called isotropic antenna) is a calibrated radio receiver with an antenna which approximates an isotropic reception pattern; that is, it has close to equal sensitivity to radio waves from any direction. It is used as a field measurement instrument to measure electromagnetic sources and calibrate antennas. The isotropic receiving antenna is usually approximated by three orthogonal antennas or sensing devices with a radiation pattern of the omnidirectional type such as short dipoles or small loop antennas.
The parameter used to define accuracy in the measurements is called isotropic deviation.
In optics, an isotropic radiator is a point source of light. The Sun approximates an (incoherent) isotropic radiator of light. Certain munitions such as flares and chaff have isotropic radiator properties. Whether a radiator is isotropic is independent of whether it obeys Lambert's law. As radiators, a spherical black body is both, a flat black body is Lambertian but not isotropic, a flat chrome sheet is neither, and by symmetry the Sun is isotropic, but not Lambertian on account of limb darkening.
An isotropic sound radiator is a theoretical loudspeaker radiating equal sound volume in all directions. Since sound waves are longitudinal waves, a coherent isotropic sound radiator is feasible; an example is a pulsing spherical membrane or diaphragm, whose surface expands and contracts radially with time, pushing on the air. [10]
The aperture of an isotropic antenna can be derived by a thermodynamic argument, which follows. [11] [12] [13]
Suppose an ideal (lossless) isotropic antenna A located within a thermal cavity CA is connected via a lossless transmission line through a band-pass filter Fν to a matched resistor R in another thermal cavity CR (the characteristic impedance of the antenna, line and filter are all matched). Both cavities are at the same temperature The filter Fν only allows through a narrow band of frequencies from to Both cavities are filled with blackbody radiation in equilibrium with the antenna and resistor. Some of this radiation is received by the antenna.
The amount of this power within the band of frequencies passes through the transmission line and filter Fν and is dissipated as heat in the resistor. The rest is reflected by the filter back to the antenna and is reradiated into the cavity. The resistor also produces Johnson–Nyquist noise current due to the random motion of its molecules at the temperature The amount of this power within the frequency band passes through the filter and is radiated by the antenna. Since the entire system is at the same temperature it is in thermodynamic equilibrium; there can be no net transfer of power between the cavities, otherwise one cavity would heat up and the other would cool down in violation of the second law of thermodynamics. Therefore, the power flows in both directions must be equal
The radio noise in the cavity is unpolarized, containing an equal mixture of polarization states. However any antenna with a single output is polarized, and can only receive one of two orthogonal polarization states. For example, a linearly polarized antenna cannot receive components of radio waves with electric field perpendicular to the antenna's linear elements; similarly a right circularly polarized antenna cannot receive left circularly polarized waves. Therefore, the antenna only receives the component of power density S in the cavity matched to its polarization, which is half of the total power density Suppose is the spectral radiance per hertz in the cavity; the power of black-body radiation per unit area (m2) per unit solid angle (steradian) per unit frequency (hertz) at frequency and temperature in the cavity. If is the antenna's aperture, the amount of power in the frequency range the antenna receives from an increment of solid angle in the direction is To find the total power in the frequency range the antenna receives, this is integrated over all directions (a solid angle of ) Since the antenna is isotropic, it has the same aperture in any direction. So the aperture can be moved outside the integral. Similarly the radiance in the cavity is the same in any direction Radio waves are low enough in frequency so the Rayleigh–Jeans formula gives a very close approximation of the blackbody spectral radiance [lower-alpha 2] Therefore
The Johnson–Nyquist noise power produced by a resistor at temperature over a frequency range is Since the cavities are in thermodynamic equilibrium so
In the field of antenna design the term radiation pattern refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other source.
In electromagnetics, an antenna's gain is a key performance parameter which combines the antenna's directivity and radiation efficiency. The term power gain has been deprecated by IEEE. In a transmitting antenna, the gain describes how well the antenna converts input power into radio waves headed in a specified direction. In a receiving antenna, the gain describes how well the antenna converts radio waves arriving from a specified direction into electrical power. When no direction is specified, gain is understood to refer to the peak value of the gain, the gain in the direction of the antenna's main lobe. A plot of the gain as a function of direction is called the antenna pattern or radiation pattern. It is not to be confused with directivity, which does not take an antenna's radiation efficiency into account.
In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.
In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In radio and telecommunications a dipole antenna or doublet is one of the two simplest and most widely-used types of antenna; the other is the monopole. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each far end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the rabbit ears television antenna found on broadcast television sets. All dipoles are electrically equivalent to two monopoles mounted end-to-end and fed with opposite phases, with the ground plane between them made virtual by the opposing monopole.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In electromagnetics and antenna theory, the aperture of an antenna is defined as "A surface, near or on an antenna, on which it is convenient to make assumptions regarding the field values for the purpose of computing fields at external points. The aperture is often taken as that portion of a plane surface near the antenna, perpendicular to the direction of maximum radiation, through which the major part of the radiation passes."
In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.
In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It is the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Therefore, the directivity of a hypothetical isotropic radiator is 1, or 0 dBi.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
Zero sound is the name given by Lev Landau in 1957 to the unique quantum vibrations in quantum Fermi liquids. The zero sound can no longer be thought of as a simple wave of compression and rarefaction, but rather a fluctuation in space and time of the quasiparticles' momentum distribution function. As the shape of Fermi distribution function changes slightly, zero sound propagates in the direction for the head of Fermi surface with no change of the density of the liquid. Predictions and subsequent experimental observations of zero sound was one of the key confirmation on the correctness of Landau's Fermi liquid theory.
In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modeled by general relativity. The equation is
Free spectral range (FSR) is the spacing in optical frequency or wavelength between two successive reflected or transmitted optical intensity maxima or minima of an interferometer or diffractive optical element.
f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.
The Carter constant is a conserved quantity for motion around black holes in the general relativistic formulation of gravity. Its SI base units are kg2⋅m4⋅s−2. Carter's constant was derived for a spinning, charged black hole by Australian theoretical physicist Brandon Carter in 1968. Carter's constant along with the energy , axial angular momentum , and particle rest mass provide the four conserved quantities necessary to uniquely determine all orbits in the Kerr–Newman spacetime.
Laser linewidth is the spectral linewidth of a laser beam.
In applied mathematics, the Biot–Tolstoy–Medwin (BTM) diffraction model describes edge diffraction. Unlike the uniform theory of diffraction (UTD), BTM does not make the high frequency assumption. BTM sees use in acoustic simulations.
The two-rays ground-reflection model is a multipath radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in line of sight (LOS). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the reflection component formed predominantly by a single ground reflected wave.
In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics. It is a special case of 4D N = 1 global supersymmetry.