Inverted vee antenna

Last updated

An inverted vee antenna is a type of antenna similar to a horizontal dipole, but with the two sides bent down towards the ground, typically creating a 120- or 90-degree angle between the dipole legs. It is typically used in areas of limited space as it can significantly reduce the ground foot print of the antenna without significantly impacting performance. Viewed from the side, it looks like the English letter "V" turned upside down, hence the name. Inverted vee antennas are commonly used by amateur radio stations, and aboard sailing vessels requiring better HF performance than available with a short whip antenna. Inverted vee antennas are horizontally polarized and have a similar pattern compared to a traditional horizontal dipole.

Contents

Typical amateur radio inverted vee installed on roof. This multiband antenna allows transmissions on the 40/20/15/10 meter bands. Center point is held up with masting and ends are secured to roof. Two VHF verticals are also shown. PIcture of ham radio inverted vee antenna.jpg
Typical amateur radio inverted vee installed on roof. This multiband antenna allows transmissions on the 40/20/15/10 meter bands. Center point is held up with masting and ends are secured to roof. Two VHF verticals are also shown.

Use

Typically, the inverted vee antenna requires only a single, tall support at the center, and the ends can be insulated and secured to anchors near ground level or near the roof if mounted on a house. This simplified arrangement has several advantages, including a shorter ground distance between the ends. For example, a dipole antenna for the 80 meter band requires a ground length of about 140 feet (43 m) from end to end. An inverted vee with a 40-foot (12 m) apex elevation requires only 115 feet (35 m). For radio amateurs living on small parcels of property, such savings can make it possible to use the lower frequency amateur bands.

Properties

In theory, the gain of an inverted vee is similar to that of a dipole at the same elevation because most of the radiation is from the high-current portion of the antenna, which is near the center. Since the center of both antennas are the same height, there is little difference in performance. Antenna modeling software bears this out for free-space models, predicting maximum gain of 2.15 dBi for the dipole and 1.9 dBi for the inverted vee.

However, in practice, ground proximity and ground conductivity as well as end effects reduce the efficiency of the inverted vee considerably compared to the dipole: In the 40-foot example above, considering a useful take-off angle of 40 degrees above the horizon, the inverted vee produces a maximum gain of 1 dBi in a circular pattern, whereas the dipole produces an oval pattern ranging from 6 dBi toward the sides down to 1.2 dBi toward the ends.

Elevating the antennas higher above ground somewhat resolves the disparity, but considering the practical, legal and financial limits which influence most antenna installations, the inverted vee will be observably inferior in performance to a dipole by 2 to 4 dB. [1] However, if space is limited, an inverted vee may permit operation on frequencies that would not be possible with a full-sized dipole.

Related Research Articles

<span class="mw-page-title-main">High frequency</span> The range 3-30 MHz of the electromagnetic spectrum

High frequency (HF) is the ITU designation for the band of radio waves with frequency between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (3.95–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

<span class="mw-page-title-main">Antenna (radio)</span> Electrical device

In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

<span class="mw-page-title-main">Effective radiated power</span> Definition of directional radio frequency power

Effective radiated power (ERP), synonymous with equivalent radiated power, is an IEEE standardized definition of directional radio frequency (RF) power, such as that emitted by a radio transmitter. It is the total power in watts that would have to be radiated by a half-wave dipole antenna to give the same radiation intensity as the actual source antenna at a distant receiver located in the direction of the antenna's strongest beam. ERP measures the combination of the power emitted by the transmitter and the ability of the antenna to direct that power in a given direction. It is equal to the input power to the antenna multiplied by the gain of the antenna. It is used in electronics and telecommunications, particularly in broadcasting to quantify the apparent power of a broadcasting station experienced by listeners in its reception area.

<span class="mw-page-title-main">T2FD antenna</span>

The Tilted Terminated Folded Dipole or Balanced Termination, Folded Dipole (BTFD) - also known as W3HH antenna - is a general-purpose shortwave antenna developed in the late 1940s by the United States Navy. It performs reasonably well over a broad frequency range, without marked dead spots in terms of either frequency, direction, or angle of radiation above the horizon.

<span class="mw-page-title-main">Rhombic antenna</span> Rhombus-shaped antenna

A rhombic antenna is made of four sections of wire suspended parallel to the ground in a diamond or "rhombus" shape. Each of the four sides is the same length – about a quarter-wavelength to one wavelength per section – converging but not touching at an angle of about 42° at the fed end and at the far end. The length is not critical, typically from one to two wavelengths (λ), but there is an optimum angle for any given length and frequency. A horizontal rhombic antenna radiates horizontally polarized radio waves at a low elevation angle off the pointy ends of the antenna.

<span class="mw-page-title-main">Dipole antenna</span> Antenna consisting of two rod shaped conductors

In radio and telecommunications a dipole antenna or doublet is one of the two simplest and most widely-used types of antenna; the other is the monopole. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each far end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets. All dipoles are electrically equivalent to two monopoles mounted end-to-end and fed with opposite phases, with the ground plane between them made "virtual" by the opposing monopole.

<span class="mw-page-title-main">Whip antenna</span> Type of radio antenna

A whip antenna is an antenna consisting of a straight flexible wire or rod. The bottom end of the whip is connected to the radio receiver or transmitter. A whip antenna is a form of monopole antenna. The antenna is designed to be flexible so that it does not break easily, and the name is derived from the whip-like motion that it exhibits when disturbed. Whip antennas for portable radios are often made of a series of interlocking telescoping metal tubes, so they can be retracted when not in use. Longer whips, made for mounting on vehicles and structures, are made of a flexible fiberglass rod around a wire core and can be up to 11 m long.

<span class="mw-page-title-main">Beverage antenna</span> Type of radio antenna

The Beverage antenna or "wave antenna" is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. It is used by amateur radio operators, shortwave listeners, longwave radio DXers and for military applications.

<span class="mw-page-title-main">T-antenna</span> Type of radio antenna

A ‘T’-antenna, ‘T’-aerial, or flat-top antenna is a monopole radio antenna consisting of one or more horizontal wires suspended between two supporting radio masts or buildings and insulated from them at the ends. A vertical wire is connected to the center of the horizontal wires and hangs down close to the ground, connected to the transmitter or receiver. The shape of the antenna resembles the letter "T", hence the name. The transmitter power is applied, or the receiver is connected, between the bottom of the vertical wire and a ground connection.

<span class="mw-page-title-main">J-pole antenna</span> Vertical omnidirectional transmitting antenna

The J-pole antenna, more properly known as the J antenna, is a vertical omnidirectional transmitting antenna used in the shortwave frequency bands. It was invented by Hans Beggerow in 1909 for use in Zeppelin airships. Trailed behind the airship, it consisted of a single one half wavelength long wire radiator, in series with a quarter-wave parallel transmission line tuning stub that matches the antenna impedance to the feedline. By 1936 this antenna began to be used for land-based transmitters with the radiating element and the matching section mounted vertically, giving it the shape of the letter "J", and by 1943 it was named the J antenna. When the radiating half-wave section is mounted horizontally, at right-angles to the quarter-wave matching stub, the variation is usually called a Zepp antenna.

<span class="mw-page-title-main">Loop antenna</span> Type of radio antenna

A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor, that for transmitting is usually fed by a balanced power source or for receiving feeds a balanced load. Within this physical description there are two distinct types:

Near vertical incidence skywave, or NVIS, is a skywave radio-wave propagation path that provides usable signals in the medium distances range — usually 0–650 km. It is used for military and paramilitary communications, broadcasting, especially in the tropics, and by radio amateurs for nearby contacts circumventing line-of-sight barriers. The radio waves travel near-vertically upwards into the ionosphere, where they are refracted back down and can be received within a circular region up to 650 km from the transmitter. If the frequency is too high, refraction is insufficient to return the signal to earth and if it is too low, absorption in the ionospheric D layer may reduce the signal strength.

<span class="mw-page-title-main">Monopole antenna</span> Type of radio antenna

A monopole antenna is a class of radio antenna consisting of a straight rod-shaped conductor, often mounted perpendicularly over some type of conductive surface, called a ground plane. The driving signal from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the lower end of the monopole and the ground plane. One side of the antenna feedline is attached to the lower end of the monopole, and the other side is attached to the ground plane, which is often the Earth. This contrasts with a dipole antenna which consists of two identical rod conductors, with the signal from the transmitter applied between the two halves of the antenna.

<span class="mw-page-title-main">Random wire antenna</span> A radio antenna consisting of a long wire suspended above the ground

A random wire antenna is a radio antenna consisting of a long wire suspended above the ground, whose length does not bear a particular relation to the wavelength of the radio waves used, but is typically chosen more for convenient fit between the available supports, or the length of wire at hand, rather than selecting length to be resonant on any particular frequency. The wire may be straight or it may be strung back and forth between trees or walls just to get as much wire into the air as feasible. Due to the great variability of the (unplanned) antenna structure, the random wire’s effectiveness can vary erratically from one installation to another, and a single random wire antenna can have wildly different reception / transmission strength in one direction than it achieves in another azimuth direction about 70°~140° different, and finally reception / transmission strengths and directions can be wildly different on only moderately different frequencies. Random wire antennas are typically fed at one end against a suitable counterpoise.

<span class="mw-page-title-main">Dual-band blade antenna</span>

A dual-band blade antenna is a type of blade antenna, a monopole whip antenna mounted on the outside of an aircraft in the form of a blade-shaped aerodynamic fairing to reduce its air drag. It is used by avionics radio communication systems. The dual band type uses a "plane and slot" design to allow efficient omni-directional coverage so that it can operate on two different radio bands.

A shortwave broadband antenna is a radio antenna that can be used for transmission of any shortwave radio band from among the greater part of the shortwave radio spectrum, without requiring any band-by-band adjustment of the antenna. Generally speaking, there is no difficulty in building an adequate receiving antenna; the challenge is designing an antenna which can be used for transmission without an adjustable impedance matching network.

<span class="mw-page-title-main">Curtain array</span> Class of large multielement directional wire radio transmitting antennas

Curtain arrays, a class of large multielement directional radio transmitting wire antennas, are used in the short-wave radio bands. They constitute a type of reflective array antenna, consisting of multiple wire dipole antennas, suspended in a vertical plane, often positioned in front of a "curtain" reflector made of a flat vertical screen of many long parallel wires. These are suspended by support wires strung between pairs of tall steel towers, reaching heights of up to 90 m high. primarily employed for long-distance skywave transmission, they emit a beam of radio waves at a shallow angle into the sky just above the horizon, which is then reflected by the ionosphere back to Earth beyond the horizon. Curtain arrays find extensive use among international short-wave radio stations for broadcasting to large areas at transcontinental distances.

<span class="mw-page-title-main">G5RV antenna</span> Dipole antenna optimized for operation in the High Frequency bands

The G5RV antenna is a dipole with a symmetric resonant feeder line, which serves as impedance matcher for a 50 Ω coax cable to the transceiver.

The Sloper Antenna is a slanted Dipole antenna.

In radio systems, many different antenna types are used whose properties are especially crafted for particular applications. Most often, the greatest effect is due to the size (wavelength) of the radio waves the antenna is to intercept or produce; one competing second effect is differences in optimization for receiving and for transmitting; another competing influence is the number and bandwidth of the frequenc(y/ies) that any single antenna must intercept or emit.

References

  1. "HF Multi-Wire Broadband Dipole Antenna Codan". at-communication.com. AT Communication International. Retrieved 24 December 2018.