Rubber ducky antenna

Last updated

Rubber ducky antenna on a transceiver RDuckyAntenna.jpg
Rubber ducky antenna on a transceiver

The rubber ducky antenna (or rubber duck aerial) is an electrically short monopole antenna that functions somewhat like a base-loaded whip antenna. It consists of a springy wire in the shape of a narrow helix, sealed in a rubber or plastic jacket to protect the antenna. [1] Rubber ducky antenna is a form of normal-mode helical antenna.

Monopole antenna type of radio antenna

A monopole antenna is a class of radio antenna consisting of a straight rod-shaped conductor, often mounted perpendicularly over some type of conductive surface, called a ground plane. The driving signal from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the lower end of the monopole and the ground plane. One side of the antenna feedline is attached to the lower end of the monopole, and the other side is attached to the ground plane, which is often the Earth. This contrasts with a dipole antenna which consists of two identical rod conductors, with the signal from the transmitter applied between the two halves of the antenna.

Whip antenna type of radio antenna

A whip antenna is an antenna consisting of a straight flexible wire or rod. The bottom end of the whip is connected to the radio receiver or transmitter. The antenna is designed to be flexible so that it does not break easily, and the name is derived from the whip-like motion that it exhibits when disturbed. Whip antennas for portable radios are often made of a series of interlocking telescoping metal tubes, so they can be retracted when not in use. Longer ones, made for mounting on vehicles and structures, are made of a flexible fiberglass rod around a wire core and can be up to 35 ft long. The length of the whip antenna is determined by the wavelength of the radio waves it is used with. The most common type is the quarter-wave whip, which is approximately one-quarter of a wavelength long. Whips are the most common type of monopole antenna, and are used in the higher frequency HF, VHF and UHF radio bands. They are widely used as the antennas for hand-held radios, cordless phones, walkie-talkies, FM radios, boom boxes, and Wi-Fi enabled devices, and are attached to vehicles as the antennas for car radios and two-way radios for wheeled vehicles and for aircraft. Larger versions mounted on roofs and radio masts are used as base station antennas for police, fire, ambulance, taxi, and other vehicle dispatchers.

Helix smooth space curve

A helix, plural helixes or helices, is a type of smooth space curve, i.e. a curve in three-dimensional space. It has the property that the tangent line at any point makes a constant angle with a fixed line called the axis. Examples of helices are coil springs and the handrails of spiral staircases. A "filled-in" helix – for example, a "spiral" (helical) ramp – is called a helicoid. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word helix comes from the Greek word ἕλιξ, "twisted, curved".


Electrically short antennas like the rubber ducky are used in portable handheld radio equipment at VHF and UHF frequencies in place of a quarter wavelength whip antenna, which is inconveniently long and cumbersome at these frequencies. Many years after its invention in 1958, the rubber ducky antenna became the antenna of choice for many portable radio devices, including walkie-talkies and other portable transceivers, scanners and other devices where safety and robustness take precedence over antenna capabilities. The rubber ducky is quite flexible, making it more suitable for handheld operation, especially when worn on the belt, than earlier rigid telescoping antennas.

Very high frequency class of radio waves

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

Wavelength spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is thus the inverse of the spatial frequency. Wavelength is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

Radio technology of using radio waves to carry information

Radio is the technology of signalling or communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking and satellite communication among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver receives radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

Origin of the name

Two rumors link the naming of the antenna with the Kennedy family. [1] In the early 1960s the rubber ducky became the antenna of choice for personal walkie-talkie transceivers used by police and security services, including the U.S. Secret Service, which guards the President of the United States. According to one rumor, the young Caroline Kennedy, daughter of President John F. Kennedy, named the flexible device when she pointed at one on an agent's transceiver and said, "rubber ducky". On the other hand, Dr. Thomas A. Clark, a senior scientist with NASA, claims to have named it after listening to one of Vaughn Meader's comedies about the Kennedy family.

John F. Kennedy 35th president of the United States

John Fitzgerald "Jack" Kennedy, commonly referred to by his initials JFK, was an American politician and journalist who served as the 35th president of the United States from January 1961 until his assassination in November 1963. He served at the height of the Cold War, and the majority of his presidency dealt with managing relations with the Soviet Union. A member of the Democratic Party, Kennedy represented Massachusetts in the U.S. House of Representatives and Senate prior to becoming president.

Walkie-talkie hand-held two-way radio communication device

A walkie-talkie is a hand-held, portable, two-way radio transceiver. Its development during the Second World War has been variously credited to Donald L. Hings, radio engineer Alfred J. Gross, and engineering teams at Motorola. First used for infantry, similar designs were created for field artillery and tank units, and after the war, walkie-talkies spread to public safety and eventually commercial and jobsite work.

Caroline Kennedy American author and diplomat

Caroline Bouvier Kennedy is an American author, attorney, and diplomat who served as the United States Ambassador to Japan from 2013 to 2017. She is a prominent member of the Kennedy family and the only surviving child of President John F. Kennedy and First Lady Jacqueline Bouvier Kennedy.

An alternative name is based on the short stub format: the "stubby antenna". [2] [3] [4]


Before the rubber ducky, antennas on portable radios usually consisted of quarter-wave whip antennas, rods whose length was one-quarter of the wavelength of the radio waves used. [1] In the VHF range where they were used, these antennas were 2 or 3 feet (0.60 to 0.91 meter) long, making them cumbersome. They were often made of telescoping tubes that could be retracted when not in use. To make the antenna more compact, electrically short antennas, shorter than one-quarter wavelength, began to be used. Electrically short antennas have considerable capacitive reactance, so to make them resonant at the operating frequency an inductor (loading coil) is added in series with the antenna. Antennas which have these inductors built into their bases are called base-loaded whips.

Inductor passive two-terminal electrical component that stores energy in its magnetic field

An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil around a core.

Loading coil

A loading coil or load coil is an inductor that is inserted into an electronic circuit to increase its inductance. The term originated in the 19th century for inductors used to prevent signal distortion in long-distance telegraph transmission cables. The term is also used for inductors in radio antennas, or between the antenna and its feedline, to make an electrically short antenna resonant at its operating frequency.

Series and parallel circuits the two basic ways of connecting the components of an electrical circuit

Components of an electrical circuit or electronic circuit can be connected in series, parallel, or series-parallel. The two simplest of these are called series and parallel and occur frequently. Components connected in series are connected along a single conductive path, so the same current flows through all of the components but voltage is dropped (lost) across each of the resistances. In a series circuit, the sum of the voltages consumed by each individual resistance is equal to the source voltage. Components connected in parallel are connected along multiple paths so that the current can split up; the same voltage is applied to each component.

The rubber ducky is an electrically short quarter-wave antenna in which the inductor, instead of being in the base, is built into the antenna itself. The antenna is made of a narrow helix of wire like a spring, which functions as the needed inductor. The springy wire is flexible, making it less prone to damage than a stiff antenna. The spring antenna is further enclosed in a plastic or rubber-like covering to protect it. The technical name for this type of antenna is a normal-mode helix. [5] Rubber ducky antennas are typically 4% to 15% of a wavelength long; [5] that is, 16% to 60% of the length of a standard quarter-wave whip.

Helical antenna

A helical antenna is an antenna consisting of one or more conducting wires wound in the form of a helix. In most cases, directional helical antennas are mounted over a ground plane, while omnidirectional designs may not be. The feed line is connected between the bottom of the helix and the ground plane. Helical antennas can operate in one of two principal modes — normal mode or axial mode.

Protective rubber removed from the antenna on a UHF CB transceiver. The entire length is used for base loading. Uhf cb wit rubber ducky exposed.jpg
Protective rubber removed from the antenna on a UHF CB transceiver. The entire length is used for base loading.

Effective aperture

Because the length of this antenna is significantly smaller than a wavelength the effective aperture, if 100% efficient, would be approximately: [6]

Like other electrically short antennas the rubber ducky has poorer performance (less gain) due to losses and thus considerably less gain than a quarter-wave whip. However it has somewhat better performance than an equal length base loaded antenna. This is because the inductance is distributed throughout the antenna and so allows somewhat greater current in the antenna.


Rubber ducky antennas have lower gain than a full size quarter-wavelength antenna, reducing the range of the radio. They are typically used in short-range two way radios where maximum range is not a requirement. Their design is a compromise between antenna gain and small size. They are difficult to characterize electrically because the current distribution along the element is not sinusoidal as is the case with a thin linear antenna.

In common with other inductively loaded short monopoles, the rubber ducky has a high Q factor and thus a narrow bandwidth. This means that as the frequency departs from the antenna's designed center frequency, its SWR increases and thus its efficiency falls off quickly. This type of antenna is often used over a wide frequency range, e.g. 100-500 MHz, and over this range its performance is poor, but in many mobile radio applications there is sufficient excess signal strength to overcome any deficiencies in the antenna.

Design rules

From these rules, one can surmise that it is possible to design a rubber ducky antenna that has about 50 ohms impedance at its feed-point, but a compromise of bandwidth may be necessary. Modern rubber ducky antennas such as those used on cell phones are tapered in such a way that few performance compromises are necessary.


Some rubber ducky antennas are designed quite differently than the original design. One type uses a spring only for support. The spring is electrically shorted out. The antenna is therefore electrically a linear element antenna. Some other rubber ducky antennas use a spring of non-conducting material for support and comprise a collinear array antenna. Such antennas are still called rubber ducky antennas even though they function quite differently (and often better) than the original spring antenna.

See also

Related Research Articles

Electrical length

In telecommunications and electrical engineering, electrical length refers to the length of an electrical conductor in terms of the phase shift introduced by transmission over that conductor at some frequency.

Transmission line specialized cable or other structure designed to carry alternating current of radio frequency

In radio-frequency engineering, a transmission line is a specialized cable or other structure designed to conduct alternating current of radio frequency, that is, currents with a frequency high enough that their wave nature must be taken into account. Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas, distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses.

Antenna (radio) electrical device which converts electric power into radio waves, and vice versa

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Dipole antenna antenna

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets.

Antenna tuner Telecommunications device

Antenna tuner, matching network, matchbox, transmatch, antenna tuning unit (ATU), antenna coupler, and feedline coupler are all equivalent names for a device connected between a radio transmitter and its antenna, to improve power transfer between them by matching the specified load impedance of the radio to the combined input impedance of the feedline.

The Beverage antenna or "wave antenna" is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. It is used by amateur radio, shortwave listening, and longwave radio DXers and military applications.

Horn antenna

A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are widely used as antennas at UHF and microwave frequencies, above 300 MHz. They are used as feed antennas for larger antenna structures such as parabolic antennas, as standard calibration antennas to measure the gain of other antennas, and as directive antennas for such devices as radar guns, automatic door openers, and microwave radiometers. Their advantages are moderate directivity, low standing wave ratio (SWR), broad bandwidth, and simple construction and adjustment.

Microstrip antenna

In telecommunication, a microstrip antenna usually means an antenna fabriciated using microstrip techniques on a printed circuit board (PCB). It is a kind of internal antenna. They are mostly used at microwave frequencies. An individual microstrip antenna consists of a patch of metal foil of various shapes on the surface of a PCB, with a metal foil ground plane on the other side of the board. Most microstrip antennas consist of multiple patches in a two-dimensional array. The antenna is usually connected to the transmitter or receiver through foil microstrip transmission lines. The radio frequency current is applied between the antenna and ground plane. Microstrip antennas have become very popular in recent decades due to their thin planar profile which can be incorporated into the surfaces of consumer products, aircraft and missiles; their ease of fabrication using printed circuit techniques; the ease of integrating the antenna on the same board with the rest of the circuit, and the possibility of adding active devices such as microwave integrated circuits to the antenna itself to make active antennas.


A T-antenna, T-aerial, flat-top antenna, or top-hat antenna is a capacitively loaded monopole wire radio antenna used in the VLF, LF, MF and shortwave bands. T-antennas are widely used as transmitting antennas for amateur radio stations, long wave and medium wave broadcasting stations. They are also used as receiving antennas for shortwave listening.

Stub (electronics) short electrical transmission line

In microwave and radio-frequency engineering, a stub or resonant stub is a length of transmission line or waveguide that is connected at one end only. The free end of the stub is either left open-circuit or short-circuited. Neglecting transmission line losses, the input impedance of the stub is purely reactive; either capacitive or inductive, depending on the electrical length of the stub, and on whether it is open or short circuit. Stubs may thus function as capacitors, inductors and resonant circuits at radio frequencies.

Short backfire antenna

A short backfire antenna is a type of a directional antenna, characterized by high gain, relatively small size, and narrow band. It has a shape of a disc with a straight edge, with a vertical pillar with a dipole acting as the driven element in roughly the middle and a conductive disc at the top acting as a sub-reflector. The bottom disc has the diameter of two wavelengths, and its collar (edge) is quarter the wavelength tall. The center pillar consists of two coaxial tubes, with a quarter-wavelength slot cut into the outer tube

Lecher line

In electronics, a Lecher line or Lecher wires is a pair of parallel wires or rods that were used to measure the wavelength of radio waves, mainly at UHF and microwave frequencies. They form a short length of balanced transmission line. When attached to a source of radio-frequency power such as a radio transmitter, the radio waves form standing waves along their length. By sliding a conductive bar that bridges the two wires along their length, the length of the waves can be physically measured. Austrian physicist Ernst Lecher, improving on techniques used by Oliver Lodge and Heinrich Hertz, developed this method of measuring wavelength around 1888. Lecher lines were used as frequency measuring devices until frequency counters became available after World War 2. They were also used as components, often called "resonant stubs", in UHF and microwave radio equipment such as transmitters, radar sets, and television sets, serving as tank circuits, filters, and impedance-matching devices. They are used at frequencies between HF/VHF, where lumped components are used, and UHF/SHF, where resonant cavities are more practical.

Folded unipole antenna

The folded unipole antenna is a type of monopole antenna; it consists of a vertical metal rod or mast mounted over a conductive surface called a ground plane. The mast is surrounded by a "skirt" of vertical wires electrically attached to the top of the mast. The skirt wires are connected by a metal ring at the bottom and the feed line is connected between the bottom of the wires and ground.

An electrically small or electrically short antenna is an antenna much shorter than the wavelength of the signal it is intended to transmit or receive. Electrically short antennas are generally less efficient and more challenging to design than longer antennas such as quarter- and half-wave antennas, but are nonetheless common due to their compact size and low cost.

Inverted-F antenna

An inverted-F antenna is a type of antenna used in wireless communication. It consists of a monopole antenna running parallel to a ground plane and grounded at one end. The antenna is fed from an intermediate point a distance from the grounded end. The design has two advantages over a simple monopole: the antenna is shorter and more compact, and the impedance matching can be controlled by the designer without the need for extraneous matching components.

In radio systems, many different antenna types are used with specialized properties for particular applications. Antennas can be classified in various ways. The list below groups together antennas under common operating principles, following the way antennas are classified in many engineering textbooks.


  1. 1 2 3 Johnson, Richard B. (2006). "Rubber Ducky Antenna". Abominable Firebug. Richard Johnson's personal website . Retrieved 2011-04-06.External link in |publisher= (help). A note at the bottom of the page says this page is not copyrighted, and text from this page has been quoted verbatim in this article
  2. "Buy the coolest short stubby antenna for your car". Stubby Antenna. Retrieved 2014-06-24.
  3. "PMAE4002 - Motorola Solutions USA". Retrieved 2014-06-24.
  5. 1 2 Fujimoto, Kyōhei (2001). Mobile antenna systems handbook, 2nd Ed. Artech House. p. 419. ISBN   1-58053-007-9.
  6. Kraus, John D. (1950). Antennas. McGraw-Hill. Chapter 3, The antenna as an aperture, pp 30.