Standing wave ratio

Last updated
SWR of a vertical HB9XBG Antenna for the 40m-band as a function of frequency SWR-Verlauf an der 7MHz HB9XBG-Antenne.jpg
SWR of a vertical HB9XBG Antenna for the 40m-band as a function of frequency

In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

Contents

Voltage standing wave ratio (VSWR) (pronounced "vizwar" [1] [2] ) is the ratio of maximum to minimum voltage on a transmission line . For example, a VSWR of 1.2 means a peak voltage 1.2 times the minimum voltage along that line, if the line is at least one half wavelength long.

A SWR can be also defined as the ratio of the maximum amplitude to minimum amplitude of the transmission line's currents, electric field strength, or the magnetic field strength. Neglecting transmission line loss, these ratios are identical.

The power standing wave ratio (PSWR) is defined as the square of the VSWR, [3] however, this deprecated term has no direct physical relation to power actually involved in transmission.

SWR is usually measured using a dedicated instrument called an SWR meter. Since SWR is a measure of the load impedance relative to the characteristic impedance of the transmission line in use (which together determine the reflection coefficient as described below), a given SWR meter can interpret the impedance it sees in terms of SWR only if it has been designed for the same particular characteristic impedance as the line. In practice most transmission lines used in these applications are coaxial cables with an impedance of either 50 or 75  ohms, so most SWR meters correspond to one of these.

Checking the SWR is a standard procedure in a radio station. Although the same information could be obtained by measuring the load's impedance with an impedance analyzer (or "impedance bridge"), the SWR meter is simpler and more robust for this purpose. By measuring the magnitude of the impedance mismatch at the transmitter output it reveals problems due to either the antenna or the transmission line.

Impedance matching

SWR is used as a measure of impedance matching of a load to the characteristic impedance of a transmission line carrying radio frequency (RF) signals. This especially applies to transmission lines connecting radio transmitters and receivers with their antennas, as well as similar uses of RF cables such as cable television connections to TV receivers and distribution amplifiers. Impedance matching is achieved when the source impedance is the complex conjugate of the load impedance. The easiest way of achieving this, and the way that minimizes losses along the transmission line, is for the imaginary part of the complex impedance of both the source and load to be zero, that is, pure resistances, equal to the characteristic impedance of the transmission line. When there is a mismatch between the load impedance and the transmission line, part of the forward wave sent toward the load is reflected back along the transmission line towards the source. The source then sees a different impedance than it expects which can lead to lesser (or in some cases, more) power being supplied by it, the result being very sensitive to the electrical length of the transmission line.

Such a mismatch is usually undesired and results in standing waves along the transmission line which magnifies transmission line losses (significant at higher frequencies and for longer cables). The SWR is a measure of the depth of those standing waves and is, therefore, a measure of the matching of the load to the transmission line. A matched load would result in an SWR of 1:1 implying no reflected wave. An infinite SWR represents complete reflection by a load unable to absorb electrical power, with all the incident power reflected back towards the source.

It should be understood that the match of a load to the transmission line is different from the match of a source to the transmission line or the match of a source to the load seen through the transmission line. For instance, if there is a perfect match between the load impedance Zload and the source impedance Zsource = Z*load, that perfect match will remain if the source and load are connected through a transmission line with an electrical length of one half wavelength (or a multiple of one half wavelengths) using a transmission line of any characteristic impedance Z0. However the SWR will generally not be 1:1, depending only on Zload and Z0. With a different length of transmission line, the source will see a different impedance than Zload which may or may not be a good match to the source. Sometimes this is deliberate, as when a quarter-wave matching section is used to improve the match between an otherwise mismatched source and load.

However typical RF sources such as transmitters and signal generators are designed to look into a purely resistive load impedance such as 50Ω or 75Ω, corresponding to common transmission lines' characteristic impedances. In those cases, matching the load to the transmission line, Zload=Z0, always ensures that the source will see the same load impedance as if the transmission line weren't there. This is identical to a 1:1 SWR. This condition (Zload=Z0) also means that the load seen by the source is independent of the transmission line's electrical length. Since the electrical length of a physical segment of transmission line depends on the signal frequency, violation of this condition means that the impedance seen by the source through the transmission line becomes a function of frequency (especially if the line is long), even if Zload is frequency-independent. So in practice, a good SWR (near 1:1) implies a transmitter's output seeing the exact impedance it expects for optimum and safe operation.

Relationship to the reflection coefficient

Incident wave (blue) is fully reflected (red wave) out of phase at short-circuited end of transmission line, creating a net voltage (black) standing wave. G = -1, SWR = [?]. Standing wave 2.gif
Incident wave (blue) is fully reflected (red wave) out of phase at short-circuited end of transmission line, creating a net voltage (black) standing wave. Γ = −1, SWR = ∞.
Standing waves on transmission line, net voltage shown in different colors during one period of oscillation. Incoming wave from left (amplitude = 1) is partially reflected with (top to bottom) G = 0.6, -0.333, and 0.8 [?]60deg. Resulting SWR = 4, 2, 9. StandingWaves-3.png
Standing waves on transmission line, net voltage shown in different colors during one period of oscillation. Incoming wave from left (amplitude = 1) is partially reflected with (top to bottom) Γ = 0.6, −0.333, and 0.8 ∠60°. Resulting SWR = 4, 2, 9.

The voltage component of a standing wave in a uniform transmission line consists of the forward wave (with complex amplitude ) superimposed on the reflected wave (with complex amplitude ).

A wave is partly reflected when a transmission line is terminated with an impedance unequal to its characteristic impedance. The reflection coefficient can be defined as:

or

is a complex number that describes both the magnitude and the phase shift of the reflection. The simplest cases with measured at the load are:

The SWR directly corresponds to the magnitude of .

At some points along the line the forward and reflected waves interfere constructively, exactly in phase, with the resulting amplitude given by the sum of those waves' amplitudes:

At other points, the waves interfere 180° out of phase with the amplitudes partially cancelling:

The voltage standing wave ratio is then

Since the magnitude of always falls in the range [0,1], the SWR is always greater than or equal to unity. Note that the phase of Vf and Vr vary along the transmission line in opposite directions to each other. Therefore, the complex-valued reflection coefficient varies as well, but only in phase. With the SWR dependent only on the complex magnitude of , it can be seen that the SWR measured at any point along the transmission line (neglecting transmission line losses) obtains an identical reading.

Since the power of the forward and reflected waves are proportional to the square of the voltage components due to each wave, SWR can be expressed in terms of forward and reflected power:

By sampling the complex voltage and current at the point of insertion, an SWR meter is able to compute the effective forward and reflected voltages on the transmission line for the characteristic impedance for which the SWR meter has been designed. Since the forward and reflected power is related to the square of the forward and reflected voltages, some SWR meters also display the forward and reflected power.

In the special case of a load RL, which is purely resistive but unequal to the characteristic impedance of the transmission line Z0, the SWR is given simply by their ratio:

with the ratio or its reciprocal is chosen to obtain a value greater than unity.

The standing wave pattern

Using complex notation for the voltage amplitudes, for a signal at frequency f, the actual (real) voltages Vactual as a function of time t are understood to relate to the complex voltages according to:

Thus taking the real part of the complex quantity inside the parenthesis, the actual voltage consists of a sine wave at frequency f with a peak amplitude equal to the complex magnitude of V, and with a phase given by the phase of the complex V. Then with the position along a transmission line given by x, with the line ending in a load located at xo, the complex amplitudes of the forward and reverse waves would be written as:

for some complex amplitude A (corresponding to the forward wave at xo that some treatments use phasors where the time dependence is according to and spatial dependence (for a wave in the +x direction) of Either convention obtains the same result for Vactual.

According to the superposition principle the net voltage present at any point x on the transmission line is equal to the sum of the voltages due to the forward and reflected waves:

Since we are interested in the variations of the magnitude of Vnet along the line (as a function of x), we shall solve instead for the squared magnitude of that quantity, which simplifies the mathematics. To obtain the squared magnitude we multiply the above quantity by its complex conjugate:

Depending on the phase of the third term, the maximum and minimum values of Vnet (the square root of the quantity in the equations) are and respectively, for a standing wave ratio of:




as earlier asserted. Along the line, the above expression for is seen to oscillate sinusoidally between and with a period of  2π /2k . This is half of the guided wavelength λ =  2π /k for the frequency f . That can be seen as due to interference between two waves of that frequency which are travelling in opposite directions.

For example, at a frequency f = 20 MHz (free space wavelength of 15 m) in a transmission line whose velocity factor is 0.67 , the guided wavelength (distance between voltage peaks of the forward wave alone) would be λ = 10 m . At instances when the forward wave at x = 0 is at zero phase (peak voltage) then at x = 10 m it would also be at zero phase, but at x = 5 m it would be at 180° phase (peak negative voltage). On the other hand, the magnitude of the voltage due to a standing wave produced by its addition to a reflected wave, would have a wavelength between peaks of only 1/2λ = 5 m . Depending on the location of the load and phase of reflection, there might be a peak in the magnitude of Vnet at x = 1.3 m . Then there would be another peak found where |Vnet| = Vmax at x = 6.3 m , whereas it would find minima of the standing wave at x = 3.8 m, 8.8 m, etc.

Practical implications of SWR

Example of estimated bandwidth of antenna according to the schedule VSWR by the help of the Ansys HFSS VSWR Return Loss.jpg
Example of estimated bandwidth of antenna according to the schedule VSWR by the help of the Ansys HFSS

The most common case for measuring and examining SWR is when installing and tuning transmitting antennas. When a transmitter is connected to an antenna by a feed line, the driving point impedance of the antenna must match the characteristic impedance of the feed line in order for the transmitter to see the impedance it was designed for (the impedance of the feed line, usually 50 or 75 ohms).

The impedance of a particular antenna design can vary due to a number of factors that cannot always be clearly identified. This includes the transmitter frequency (as compared to the antenna's design or resonant frequency), the antenna's height above and quality of the ground, proximity to large metal structures, and variations in the exact size of the conductors used to construct the antenna. [5] (p20.2)

When an antenna and feed line do not have matching impedances, the transmitter sees an unexpected impedance, where it might not be able to produce its full power, and can even damage the transmitter in some cases. [5] (pp19.4–19.6) The reflected power in the transmission line increases the average current and therefore losses in the transmission line compared to power actually delivered to the load. [6] It is the interaction of these reflected waves with forward waves which causes standing wave patterns, [5] (pp19.4–19.6) with the negative repercussions we have noted. [5] (p19.13)

Matching the impedance of the antenna to the impedance of the feed line can sometimes be accomplished through adjusting the antenna itself, but otherwise is possible using an antenna tuner, an impedance matching device. Installing the tuner between the feed line and the antenna allows for the feed line to see a load close to its characteristic impedance, while sending most of the transmitter's power (a small amount may be dissipated within the tuner) to be radiated by the antenna despite its otherwise unacceptable feed point impedance. Installing a tuner in between the transmitter and the feed line can also transform the impedance seen at the transmitter end of the feed line to one preferred by the transmitter. However, in the latter case, the feed line still has a high SWR present, with the resulting increased feed line losses unmitigated.

The magnitude of those losses are dependent on the type of transmission line, and its length. They always increase with frequency. For example, a certain antenna used well away from its resonant frequency may have an SWR of 6:1. For a frequency of 3.5 MHz, with that antenna fed through 75 meters of RG-8A coax, the loss due to standing waves would be 2.2 dB. However the same 6:1 mismatch through 75 meters of RG-8A coax would incur 10.8 dB of loss at 146 MHz. [5] (pp19.4–19.6) Thus, a better match of the antenna to the feed line, that is, a lower SWR, becomes increasingly important with increasing frequency, even if the transmitter is able to accommodate the impedance seen (or an antenna tuner is used between the transmitter and feed line).

Certain types of transmissions can suffer other negative effects from reflected waves on a transmission line. Analog TV can experience "ghosts" from delayed signals bouncing back and forth on a long line. FM stereo can also be affected and digital signals can experience delayed pulses leading to bit errors. Whenever the delay times for a signal going back down and then again up the line are comparable to the modulation time constants, effects occur. For this reason, these types of transmissions require a low SWR on the feedline, even if SWR induced loss might be acceptable and matching is done at the transmitter.

Methods of measuring standing wave ratio

Slotted line. The probe moves along the line to measure the variable voltage. SWR is the maximum divided by the minimum voltage Slotted line.png
Slotted line. The probe moves along the line to measure the variable voltage. SWR is the maximum divided by the minimum voltage

Many different methods can be used to measure standing wave ratio. The most intuitive method uses a slotted line which is a section of transmission line with an open slot which allows a probe to detect the actual voltage at various points along the line. [7]

Thus the maximum and minimum values can be compared directly. This method is used at VHF and higher frequencies. At lower frequencies, such lines are impractically long.

Directional couplers can be used at HF through microwave frequencies. Some are a quarter wave or more long, which restricts their use to the higher frequencies. Other types of directional couplers sample the current and voltage at a single point in the transmission path and mathematically combine them in such a way as to represent the power flowing in one direction. [8] The common type of SWR / power meter used in amateur operation may contain a dual directional coupler. Other types use a single coupler which can be rotated 180 degrees to sample power flowing in either direction. Unidirectional couplers of this type are available for many frequency ranges and power levels and with appropriate coupling values for the analog meter used.

A directional wattmeter using a rotatable directional coupler element. Bird 43 RF power meter.jpg
A directional wattmeter using a rotatable directional coupler element.

The forward and reflected power measured by directional couplers can be used to calculate SWR. The computations can be done mathematically in analog or digital form or by using graphical methods built into the meter as an additional scale or by reading from the crossing point between two needles on the same meter. The above measuring instruments can be used "in line" that is, the full power of the transmitter can pass through the measuring device so as to allow continuous monitoring of SWR. Other instruments, such as network analyzers, low power directional couplers and antenna bridges use low power for the measurement and must be connected in place of the transmitter. Bridge circuits can be used to directly measure the real and imaginary parts of a load impedance and to use those values to derive SWR. These methods can provide more information than just SWR or forward and reflected power. [9] Stand alone antenna analyzers use various measuring methods and can display SWR and other parameters plotted against frequency. By using directional couplers and a bridge in combination, it is possible to make an in line instrument that reads directly in complex impedance or in SWR. [10] Stand alone antenna analyzers also are available that measure multiple parameters.

Power standing wave ratio

The term power standing wave ratio (PSWR) is sometimes referred to, and defined as, the square of the voltage standing wave ratio. The term is widely cited as "misleading". [11]

The expression "power standing-wave ratio", which may sometimes be encountered, is even more misleading, for the power distribution along a loss-free line is constant. ...

J.H. Gridley (2014) [12]

However it does correspond to one type of measurement of SWR using what was formerly a standard measuring instrument at microwave frequencies, the slotted line. The slotted line is a waveguide (or air-filled coaxial line) in which a small sensing antenna which is part of a crystal detector or detector is placed in the electric field in the line. The voltage induced in the antenna is rectified by either a point contact diode (crystal rectifier) or a Schottky barrier diode that is incorporated in the detector. These detectors have a square law output for low levels of input. Readings therefore corresponded to the square of the electric field along the slot, E2(x), with maximum and minimum readings of E2max and E2min found as the probe is moved along the slot. The ratio of these yields the square of the SWR, the so-called PSWR. [13]

This technique of rationalization of terms is fraught with problems.[ clarification needed ] The square law behavior of the detector diode is exhibited only when the voltage across the diode is below the knee of the diode. Once the detected voltage exceeds the knee, the response of the diode becomes nearly linear. In this mode the diode and its associated filtering capacitor produce a voltage that is proportional to the peak of the sampled voltage. The operator of such a detector would not have a ready indication as to the mode in which the detector diode is operating and therefore differentiating the results between SWR or so called PSWR is not practical. Perhaps even worse, is the common case where the minimum detected voltage is below the knee and the maximum voltage is above the knee. In this case, the computed results are largely meaningless. Thus the terms PSWR and Power Standing Wave Ratio are deprecated and should be considered only from a legacy measurement perspective.

Implications of SWR on medical applications

SWR can also have a detrimental impact upon the performance of microwave-based medical applications. In microwave electrosurgery an antenna that is placed directly into tissue may not always have an optimal match with the feedline resulting in an SWR. The presence of SWR can affect monitoring components used to measure power levels impacting the reliability of such measurements. [14]

See also

Related Research Articles

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Reflection coefficient</span> Measure of wave reflectivity

In physics and electrical engineering the reflection coefficient is a parameter that describes how much of a wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the amplitude of the reflected wave to the incident wave, with each expressed as phasors. For example, it is used in optics to calculate the amount of light that is reflected from a surface with a different index of refraction, such as a glass surface, or in an electrical transmission line to calculate how much of the electromagnetic wave is reflected by an impedance discontinuity. The reflection coefficient is closely related to the transmission coefficient. The reflectance of a system is also sometimes called a reflection coefficient.

In telecommunications, return loss is a measure in relative terms of the power of the signal reflected by a discontinuity in a transmission line or optical fiber. This discontinuity can be caused by a mismatch between the termination or load connected to the line and the characteristic impedance of the line. It is usually expressed as a ratio in decibels (dB);

<span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

<span class="mw-page-title-main">Waveguide</span> Structure that guides waves efficiently

A waveguide is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include acoustic waveguides which direct sound, optical waveguides which direct light, and radio-frequency waveguides which direct electromagnetic waves other than light like radio waves.

<span class="mw-page-title-main">Antenna (radio)</span> Electrical device

In radio engineering, an antenna or aerial is an electronic device that converts an alternating electric current into radio waves (transmitting), or radio waves into an electric current (receiving). It is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

<span class="mw-page-title-main">Impedance matching</span> Adjusting input/output impedances of an electrical circuit for some purpose

In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.

<span class="mw-page-title-main">Twin-lead</span> Two-conductor flat cable used to carry radio frequency signals

Twin lead cable is a two-conductor flat cable used as a balanced transmission line to carry radio frequency (RF) signals. It is constructed of two, stranded copper wires, or solid copper-clad steel wires. The wires are held a fixed distance apart by a plastic ribbon that is a good insulator at radio frequencies. It is also called ribbon cable. The uniform spacing of the wires is the key to the cable's function as a transmission line: Any abrupt change in spacing would cause some of the signal to reflect back toward the source, rather than passing through. The plastic also covers and insulates the wires. The name twin lead is most often used to refer specifically to 300 Ω (Ohm) ribbon cable, the most common type, but on occasion, twin lead is used to refer to any type of parallel wire line. Parallel wire line is available with several different values of characteristic impedance such as twin lead ribbon cable (300 Ω), window line, and open wire line or ladder line (500~650 Ω).

Radiation resistance is that part of an antenna's feedpoint electrical resistance caused by the emission of radio waves from the antenna. A radio transmitter applies a radio frequency alternating current to an antenna, which radiates the energy of the current as radio waves. Because the antenna is absorbing the energy it is radiating from the transmitter, the antenna's input terminals present a resistance to the current from the transmitter.

<span class="mw-page-title-main">Dipole antenna</span> Antenna consisting of two rod-shaped conductors

In radio and telecommunications a dipole antenna or doublet is one of the two simplest and most widely-used types of antenna; the other is the monopole. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each far end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the rabbit ears television antenna found on broadcast television sets. All dipoles are electrically equivalent to two monopoles mounted end-to-end and fed with opposite phases, with the ground plane between them made virtual by the opposing monopole.

<span class="mw-page-title-main">Smith chart</span> Electrical engineers graphical calculator

The Smith chart, is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio frequency (RF) engineering to assist in solving problems with transmission lines and matching circuits.

An antenna tuner, a matchbox, transmatch, antenna tuning unit (ATU), antenna coupler, or feedline coupler is a device connected between a radio transmitter or receiver and its antenna to improve power transfer between them by matching the impedance of the radio to the antenna's feedline. Antenna tuners are particularly important for use with transmitters. Transmitters feed power into a resistive load, very often 50 ohms, for which the transmitter is optimally designed for power output, efficiency, and low distortion. If the load seen by the transmitter departs from this design value due to improper tuning of the antenna/feedline combination the power output will change, distortion may occur and the transmitter may overheat.

Scattering parameters or S-parameters describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals.

<span class="mw-page-title-main">T-antenna</span> Type of radio antenna

A ‘T’-antenna, ‘T’-aerial, or flat-top antenna is a monopole radio antenna consisting of one or more horizontal wires suspended between two supporting radio masts or buildings and insulated from them at the ends. A vertical wire is connected to the center of the horizontal wires and hangs down close to the ground, connected to the transmitter or receiver. The shape of the antenna resembles the letter "T", hence the name. The transmitter power is applied, or the receiver is connected, between the bottom of the vertical wire and a ground connection.

<span class="mw-page-title-main">SWR meter</span> Measurement device for radio equipment

A standing wave ratio meter, SWR meter, ISWR meter, or VSWR meter measures the standing wave ratio (SWR) in a transmission line. The meter indirectly measures the degree of mismatch between a transmission line and its load. Electronics technicians use it to adjust radio transmitters and their antennas and feedlines to be impedance matched so they work together properly, and evaluate the effectiveness of other impedance matching efforts.

Antenna measurement techniques refers to the testing of antennas in order to ensure that the antenna meets specifications or simply to characterize it. Typical antenna parameters are gain, bandwidth, radiation pattern, beamwidth, polarization, impedance; These are imperative communicative means.

A radio transmitter or receiver is connected to an antenna which emits or receives the radio waves. The antenna feed system or antenna feed is the cable or conductor, and other associated equipment, which connects the transmitter or receiver with the antenna and makes the two devices compatible. In a radio transmitter, the transmitter generates an alternating current of radio frequency, and the feed system feeds the current to the antenna, which converts the power in the current to radio waves. In a radio receiver, the incoming radio waves excite tiny alternating currents in the antenna, and the feed system delivers this current to the receiver, which processes the signal.

The telegrapher's equations are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory. The equations and their solutions are applicable from 0 Hz to frequencies at which the transmission line structure can support higher order non-TEM modes. The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time. The resulting time domain equations are partial differential equations of both time and distance. In the frequency domain the independent variables are distance and either frequency, , or complex frequency, . The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time domain variables or they can be taken to be phasors. The resulting frequency domain equations are ordinary differential equations of distance. An advantage of the frequency domain approach is that differential operators in the time domain become algebraic operations in frequency domain.

<span class="mw-page-title-main">Reflections of signals on conducting lines</span> Electrical waves in return direction

A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.

<span class="mw-page-title-main">Slotted line</span> Device used for microwave measurements

Slotted lines are used for microwave measurements and consist of a movable probe inserted into a slot in a transmission line. They are used in conjunction with a microwave power source and usually, in keeping with their low-cost application, a low cost Schottky diode detector and VSWR meter rather than an expensive microwave power meter.

References

  1. Knott, Eugene F.; Shaeffer, John F.; Tuley, Michael T. (2004). Radar cross section. SciTech Radar and Defense Series (2nd ed.). SciTech Publishing. p. 374. ISBN   978-1-891121-25-8.
  2. Schaub, Keith B.; Kelly, Joe (2004). Production testing of RF and system-on-a-chip devices for wireless communications. Artech House microwave library. Artech House. p. 93. ISBN   978-1-58053-692-9.
  3. Silver, Samuel (1984) [1949]. Microwave Antenna Theory and Design. IEE. p. 28. ISBN   0863410170.
  4. Sliusar, I.; Slyusar, V.; Voloshko, S.; Zinchenko, A.; Utkin, Y. (22–27 June 2020). Synthesis of a broadband ring antenna of a two-tape design (PDF). 12th International Conference on Antenna Theory and Techniques (ICATT-2020). Kharkiv, Ukraine. Archived (PDF) from the original on 2022-10-09.
  5. 1 2 3 4 5 Hutchinson, Chuck, ed. (2000). The ARRL Handbook for Radio Amateurs 2001. Newington, CT: American Radio Relay League. pp. 19.4–19.6, 19.13, 20.2. ISBN   978-0-87259-186-8.
  6. Ford, Steve (April 1994), "The SWR obsession" (PDF), QST Magazine, vol. 78, no. 4, Newington, CT: American Radio Relay League, pp. 70–72, retrieved 2014-11-04
  7. Terman, Fredrick E. (1952). Electronic Measurements. McGraw Hill. p. 135 ff. LCCN   51-12650.
  8. Schulz, Glenn B., (W9IQ) (January 24, 2018). "How does an SWR meter really work?". ham.stackexchange.com. Retrieved March 18, 2018.{{cite web}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  9. "Nautel adds two models to NX series". Nautel (Press release). March 11, 2015. Archived from the original on August 18, 2016. Retrieved July 6, 2017.
  10. "Model OIB-1 and OIB-3". www.deltaelectronics.com. Delta Electronics, Inc.
  11. Wolff, Christian. "Standing wave ratio". radartutorial.eu.
  12. Gridley, J.H. (2014). Principles of Electrical Transmission Lines in Power and Communication. Elsevier. p. 265. ISBN   978-1483186030 via Google Books.
  13. Rollin, Bernard Vincent (1964). An Introduction to Electronics. Clarendon Press. p. 209. OCLC   1148924.
  14. "Problems with VSWR in medical applications". microwaves101.com. Retrieved July 6, 2017.

Further reading