Reflection coefficient

Last updated

In physics and electrical engineering the reflection coefficient is a parameter that describes how much of a wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the amplitude of the reflected wave to the incident wave, with each expressed as phasors. For example, it is used in optics to calculate the amount of light that is reflected from a surface with a different index of refraction, such as a glass surface, or in an electrical transmission line to calculate how much of the electromagnetic wave is reflected by an impedance discontinuity. The reflection coefficient is closely related to the transmission coefficient . The reflectance of a system is also sometimes called a "reflection coefficient".

Contents

A wave experiences partial transmittance and partial reflectance when the medium through which it travels suddenly changes. The reflection coefficient determines the ratio of the reflected wave amplitude to the incident wave amplitude. Partial transmittance.gif
A wave experiences partial transmittance and partial reflectance when the medium through which it travels suddenly changes. The reflection coefficient determines the ratio of the reflected wave amplitude to the incident wave amplitude.

Different specialties have different applications for the term.

Transmission lines

In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z0. The reference impedance used is typically the characteristic impedance of a transmission line that's involved, but one can speak of reflection coefficient without any actual transmission line being present. In terms of the forward and reflected waves determined by the voltage and current, the reflection coefficient is defined as the complex ratio of the voltage of the reflected wave () to that of the incident wave (). This is typically represented with a (capital gamma) and can be written as:

It can as well be defined using the currents associated with the reflected and forward waves, but introducing a minus sign to account for the opposite orientations of the two currents:

The reflection coefficient may also be established using other field or circuit pairs of quantities whose product defines power resolvable into a forward and reverse wave. For instance, with electromagnetic plane waves, one uses the ratio of the electric fields of the reflected to that of the forward wave (or magnetic fields, again with a minus sign); the ratio of each wave's electric field E to its magnetic field H is again an impedance Z0 (equal to the impedance of free space in a vacuum). Similarly in acoustics one uses the acoustic pressure and velocity respectively.

Simple circuit configuration showing measurement location of reflection coefficient. Reflection Coefficient Circuit.svg
Simple circuit configuration showing measurement location of reflection coefficient.

In the accompanying figure, a signal source with internal impedance possibly followed by a transmission line of characteristic impedance is represented by its Thévenin equivalent, driving the load . For a real (resistive) source impedance , if we define using the reference impedance then the source's maximum power is delivered to a load , in which case implying no reflected power. More generally, the squared-magnitude of the reflection coefficient denotes the proportion of that power that is "reflected" and absorbed by the source, with the power actually delivered to the load being .

Anywhere along an intervening (lossless) transmission line of characteristic impedance , the magnitude of the reflection coefficient will remain the same (the powers of the forward and reflected waves stay the same) but with a different phase. In the case of a short circuited load (), one finds at the load. This implies the reflected wave having a 180° phase shift (phase reversal) with the voltages of the two waves being opposite at that point and adding to zero (as a short circuit demands).

Relation to load impedance

The reflection coefficient is determined by the load impedance at the end of the transmission line, as well as the characteristic impedance of the line. A load impedance of terminating a line with a characteristic impedance of will have a reflection coefficient of

This is the coefficient at the load. The reflection coefficient can also be measured at other points on the line. The magnitude of the reflection coefficient in a lossless transmission line is constant along the line (as are the powers in the forward and reflected waves). However its phase will be shifted by an amount dependent on the electrical distance from the load. If the coefficient is measured at a point meters from the load, so the electrical distance from the load is radians, the coefficient at that point will be

Note that the phase of the reflection coefficient is changed by twice the phase length of the attached transmission line. That is to take into account not only the phase delay of the reflected wave, but the phase shift that had first been applied to the forward wave, with the reflection coefficient being the quotient of these. The reflection coefficient so measured, , corresponds to an impedance which is generally dissimilar to present at the far side of the transmission line.

The complex reflection coefficient (in the region , corresponding to passive loads) may be displayed graphically using a Smith chart. The Smith chart is a polar plot of , therefore the magnitude of is given directly by the distance of a point to the center (with the edge of the Smith chart corresponding to ). Its evolution along a transmission line is likewise described by a rotation of around the chart's center. Using the scales on a Smith chart, the resulting impedance (normalized to ) can directly be read. Before the advent of modern electronic computers, the Smith chart was of particular use as a sort of analog computer for this purpose.

Standing wave ratio

The standing wave ratio (SWR) is determined solely by the magnitude of the reflection coefficient:

Along a lossless transmission line of characteristic impedance Z0, the SWR signifies the ratio of the voltage (or current) maxima to minima (or what it would be if the transmission line were long enough to produce them). The above calculation assumes that has been calculated using Z0 as the reference impedance. Since it uses only the magnitude of , the SWR intentionally ignores the specific value of the load impedance ZL responsible for it, but only the magnitude of the resulting impedance mismatch. That SWR remains the same wherever measured along a transmission line (looking towards the load) since the addition of a transmission line length to a load only changes the phase, not magnitude of . While having a one-to-one correspondence with reflection coefficient, SWR is the most commonly used figure of merit in describing the mismatch affecting a radio antenna or antenna system. It is most often measured at the transmitter side of a transmission line, but having, as explained, the same value as would be measured at the antenna (load) itself.

Seismology

Reflection coefficient is used in feeder testing for reliability of medium.

Optics and microwaves

In optics and electromagnetics in general, "reflection coefficient" can refer to either the amplitude reflection coefficient described here, or the reflectance, depending on context. Typically, the reflectance is represented by a capital R, while the amplitude reflection coefficient is represented by a lower-case r. These related concepts are covered by Fresnel equations in classical optics.

Acoustics

Acousticians use reflection coefficients to understand the effect of different materials on their acoustic environments.

See also

Related Research Articles

<span class="mw-page-title-main">Fresnel equations</span> Equations of light transmission and reflection

The Fresnel equations describe the reflection and transmission of light when incident on an interface between different optical media. They were deduced by Augustin-Jean Fresnel who was the first to understand that light is a transverse wave, even though no one realized that the "vibrations" of the wave were electric and magnetic fields. For the first time, polarization could be understood quantitatively, as Fresnel's equations correctly predicted the differing behaviour of waves of the s and p polarizations incident upon a material interface.

<span class="mw-page-title-main">Characteristic impedance</span>

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively, and equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the change per unit length, but it is otherwise dimensionless. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

In telecommunications, return loss is a measure in relative terms of the power of the signal reflected by a discontinuity in a transmission line or optical fiber. This discontinuity can be caused by a mismatch between the termination or load connected to the line and the characteristic impedance of the line. It is usually expressed as a ratio in decibels (dB);

In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

<span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

<span class="mw-page-title-main">Waveguide</span> Structure that guides waves efficiently

A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities decrease according to the inverse square law as they expand into three-dimensional space.

<span class="mw-page-title-main">Electrical impedance</span> Opposition of a circuit to a current when a voltage is applied

In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.

<span class="mw-page-title-main">Impedance matching</span> Matching loads to power sources in engineering

In electronics, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.

<span class="mw-page-title-main">Smith chart</span> Electrical engineers graphical calculator

The Smith chart, invented by Phillip H. Smith (1905–1987) and independently by Mizuhashi Tosaku, is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio frequency (RF) engineering to assist in solving problems with transmission lines and matching circuits. The Smith chart can be used to simultaneously display multiple parameters including impedances, admittances, reflection coefficients, scattering parameters, noise figure circles, constant gain contours and regions for unconditional stability, including mechanical vibrations analysis. The Smith chart is most frequently used at or within the unity radius region. However, the remainder is still mathematically relevant, being used, for example, in oscillator design and stability analysis. While the use of paper Smith charts for solving the complex mathematics involved in matching problems has been largely replaced by software based methods, the Smith chart is still a very useful method of showing how RF parameters behave at one or more frequencies, an alternative to using tabular information. Thus most RF circuit analysis software includes a Smith chart option for the display of results and all but the simplest impedance measuring instruments can plot measured results on a Smith chart display.

<span class="mw-page-title-main">Input impedance</span>

The input impedance of an electrical network is the measure of the opposition to current (impedance), both static (resistance) and dynamic (reactance), into the load that is external to the electrical source network. The input admittance is a measure of the load network's propensity to draw current. The source network is the portion of the network that transmits power, and the load network is the portion of the network that consumes power.

Scattering parameters or S-parameters describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals.

<span class="mw-page-title-main">SWR meter</span> Measurement device for radio equipment

The standing wave ratio meter, SWR meter, ISWR meter, or VSWR meter measures the standing wave ratio (SWR) in a transmission line. The meter indirectly measures the degree of mismatch between a transmission line and its load. Electronics technicians use it to adjust radio transmitters and their antennas and feedlines to be impedance matched so they work together properly, and evaluate the effectiveness of other impedance matching efforts.

<span class="mw-page-title-main">Transmission coefficient</span>

The transmission coefficient is used in physics and electrical engineering when wave propagation in a medium containing discontinuities is considered. A transmission coefficient describes the amplitude, intensity, or total power of a transmitted wave relative to an incident wave.

A quarter-wave impedance transformer, often written as λ/4 impedance transformer, is a transmission line or waveguide used in electrical engineering of length one-quarter wavelength (λ), terminated with some known impedance. It presents at its input the dual of the impedance with which it is terminated.

<span class="mw-page-title-main">Reflections of signals on conducting lines</span> Electrical waves in return direction

A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.

Metal-mesh optical filters are optical filters made from stacks of metal meshes and dielectric. They are used as part of an optical path to filter the incoming light to allow frequencies of interest to pass while reflecting other frequencies of light.

A phase change sometimes occurs when a wave is reflected, specifically from a medium with faster wave speed to the boundary of a medium with slower wave speed. Such reflections occur for many types of wave, including light waves, sound waves, and waves on strings.

<span class="mw-page-title-main">Slotted line</span> Device used for microwave measurements

Slotted lines are used for microwave measurements and consist of a movable probe inserted into a slot in a transmission line. They are used in conjunction with a microwave power source and usually, in keeping with their low-cost application, a low cost Schottky diode detector and VSWR meter rather than an expensive microwave power meter.

<span class="mw-page-title-main">Performance and modelling of AC transmission</span>

Performance modelling is the abstraction of a real system into a simplified representation to enable the prediction of performance. The creation of a model can provide insight into how a proposed or actual system will or does work. This can, however, point towards different things to people belonging to different fields of work.

References