Reflection phase change

Last updated

A phase change sometimes occurs when a wave is reflected, specifically from a medium with faster wave speed to the boundary of a medium with slower wave speed. [1] [2] Such reflections occur for many types of wave, including light waves, sound waves, and waves on vibrating strings. [3]

Contents

General theory

For an incident wave traveling from one medium (where the wave speed is c1) to another medium (where the wave speed is c2), one part of the wave will transmit into the second medium, while another part reflects back into the other direction and stays in the first medium. The amplitude of the transmitted wave and the reflected wave can be calculated by using the continuity condition at the boundary.

Consider the component of the incident wave with an angular frequency of ω, which has the waveform

At t=0, the incident reaches the boundary between the two mediums at x=0. Therefore, the corresponding reflected wave and the transmitted wave will have the waveforms

The continuity condition at the boundary is

This gives the equations

And we have the reflectivity and transmissivity

When c2 < c1, the reflected wave has a reflection phase change of 180°, since B/A < 0. The energy conservation can be verified by

The above discussion holds true for any component, regardless of its angular frequency of ω.

The limiting case of c2 = 0 corresponds to a "fixed end" that doesn't move, whereas the limiting case of c2 → ∞ corresponds to a "free end".

Optics

Light waves change phase by 180° when they reflect from the surface of a medium with higher refractive index than that of the medium in which they are travelling. [1] A light wave travelling in air that is reflected by a glass barrier will undergo a 180° phase change, while light travelling in glass will not undergo a phase change if it is reflected by a boundary with air. For this reason, optical boundaries are normally specified as an ordered pair (air-glass, glass-air); indicating which material the light is moving out of, and in to, respectively.

"Phase" here is the phase of the electric field oscillations, not the magnetic field oscillations (while the electric field will undergo 180° phase change, the magnetic field will undergo 0° phase change. Vice versa is true when reflection occurs at lower refractive index interface.) [4] Also, this is referring to near-normal incidence—for p-polarized light reflecting off glass at glancing angle, beyond the Brewster angle, the phase change is 0°. The phase changes that take place upon reflection play an important part in thin film interference.

Sound waves

Sound waves in air, in a tube ClosedCylinderResonance.svg
Sound waves in air, in a tube

Sound waves in a solid experience a phase reversal (a 180° change) when they reflect from a boundary with air. [2] Sound waves in air do not experience a phase change when they reflect from a solid, but they do exhibit a 180° change when reflecting from a region with lower acoustic impedance. An example of this is when a sound wave in a hollow tube encounters the open end of the tube. The phase change on reflection is important in the physics of wind instruments.

Strings

Standing waves on a string Standing waves on a string.gif
Standing waves on a string

A wave on a string experiences a 180° phase change when it reflects from a point where the string is fixed. [2] [3] Reflections from the free end of a string exhibit no phase change. The phase change when reflecting from a fixed point contributes to the formation of standing waves on strings, which produce the sound from stringed instruments.

The same 180° phase change happens when the wave traveling in a lighter string (lower linear mass density) reflects off of the boundary of a heavier string (higher linear mass density). This happens because the heavier string doesn't respond as quickly to the tension force as the lighter string, and therefore the amplitude of the oscillation at the boundary point is less than the incoming wave. By the superposition principle, the reflected wave must cancel part of the incoming wave, and therefore it is phase shifted. Note that when the wave traveling in a heavier string reflects off of the boundary of a lighter string, since the boundary point has the freedom to move as quickly as possible, no such phase shift would occur in the reflected wave.

Electrical transmission lines

Reflections of signals on conducting lines typically exhibit a phase change from the incident signal. There are two extreme cases of termination: short circuit (closed line), and open circuit (broken line). In both cases the full amplitude of the wave is reflected.

short circuit
The voltage wave reflection on a line terminated with a short circuit is 180° phase shifted. This is analogous (by the mobility analogy) to a string where the end is fixed in position, or a sound wave in a tube with a blocked off end. The current wave, on the other hand, is not phase shifted.
broken / open line
A transmission line terminated with an open circuit is the dual case; the voltage wave is shifted by 0° and the current wave is shifted by 180°.
reactive termination
A transmission line terminated with a pure capacitance or inductance will also give rise to a phase shifted wave at full amplitude. The voltage phase shift is given by [5] :275
where
  • Z0 is the characteristic impedance of the line
  • X is the susceptance of the inductance or capacitance, given respectively by ωL or 1ωC
  • L and C are, respectively, inductance and capacitance, and
  • ω is the angular frequency.

In the case of reactive termination the phase shift will be between 0 and +180° for inductors and between 0 and 180° for capacitors. The phase shift will be exactly ±90° when |X| = Z0.

For the general case when the line is terminated with some arbitrary impedance, Z, the reflected wave is generally less than the incident wave. The full expression for phase shift needs to be used, [5] :273

This expression assumes the characteristic impedance is purely resistive.

See also

Related Research Articles

<span class="mw-page-title-main">Fresnel equations</span> Equations of light transmission and reflection

The Fresnel equations describe the reflection and transmission of light when incident on an interface between different optical media. They were deduced by French engineer and physicist Augustin-Jean Fresnel who was the first to understand that light is a transverse wave, when no one realized that the waves were electric and magnetic fields. For the first time, polarization could be understood quantitatively, as Fresnel's equations correctly predicted the differing behaviour of waves of the s and p polarizations incident upon a material interface.

<span class="mw-page-title-main">Phase velocity</span> Rate at which the phase of the wave propagates in space

The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and time period T as

<span class="mw-page-title-main">Wave equation</span> Differential equation important in physics

The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics.

<span class="mw-page-title-main">Characteristic impedance</span> Property of an electrical circuit

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively, and equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

<span class="mw-page-title-main">Gaussian beam</span> Monochrome light beam whose amplitude envelope is a Gaussian function

In optics, a Gaussian beam is an idealized beam of electromagnetic radiation whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. This fundamental (or TEM00) transverse Gaussian mode describes the intended output of many lasers, as such a beam diverges less and can be focused better than any other. When a Gaussian beam is refocused by an ideal lens, a new Gaussian beam is produced. The electric and magnetic field amplitude profiles along a circular Gaussian beam of a given wavelength and polarization are determined by two parameters: the waistw0, which is a measure of the width of the beam at its narrowest point, and the position z relative to the waist.

<span class="mw-page-title-main">Reflection coefficient</span> Measure of wave reflectivity

In physics and electrical engineering the reflection coefficient is a parameter that describes how much of a wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the amplitude of the reflected wave to the incident wave, with each expressed as phasors. For example, it is used in optics to calculate the amount of light that is reflected from a surface with a different index of refraction, such as a glass surface, or in an electrical transmission line to calculate how much of the electromagnetic wave is reflected by an impedance discontinuity. The reflection coefficient is closely related to the transmission coefficient. The reflectance of a system is also sometimes called a "reflection coefficient".

<span class="mw-page-title-main">Standing wave</span> Wave that remains in a constant position

In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect to time, and the oscillations at different points throughout the wave are in phase. The locations at which the absolute value of the amplitude is minimum are called nodes, and the locations where the absolute value of the amplitude is maximum are called antinodes.

<span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

The wave impedance of an electromagnetic wave is the ratio of the transverse components of the electric and magnetic fields. For a transverse-electric-magnetic (TEM) plane wave traveling through a homogeneous medium, the wave impedance is everywhere equal to the intrinsic impedance of the medium. In particular, for a plane wave travelling through empty space, the wave impedance is equal to the impedance of free space. The symbol Z is used to represent it and it is expressed in units of ohms. The symbol η (eta) may be used instead of Z for wave impedance to avoid confusion with electrical impedance.

<span class="mw-page-title-main">Smith chart</span> Electrical engineers graphical calculator

The Smith chart, is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio frequency (RF) engineering to assist in solving problems with transmission lines and matching circuits.

Particle velocity is the velocity of a particle in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string.

Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cubic metre, or in the MKS system the rayl per square metre (Rayl/m2), while that of specific acoustic impedance is the pascal-second per metre (Pa·s/m), or in the MKS system the rayl (Rayl). There is a close analogy with electrical impedance, which measures the opposition that a system presents to the electric current resulting from a voltage applied to the system.

Particle displacement or displacement amplitude is a measurement of distance of the movement of a sound particle from its equilibrium position in a medium as it transmits a sound wave. The SI unit of particle displacement is the metre (m). In most cases this is a longitudinal wave of pressure, but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling.

<span class="mw-page-title-main">Phasor</span> Complex number representing a particular sine wave

In physics and engineering, a phasor is a complex number representing a sinusoidal function whose amplitude, and initial phase are time-invariant and whose angular frequency is fixed. It is related to a more general concept called analytic representation, which decomposes a sinusoid into the product of a complex constant and a factor depending on time and frequency. The complex constant, which depends on amplitude and phase, is known as a phasor, or complex amplitude, and sinor or even complexor.

The telegrapher's equations are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory. The equations and their solutions are applicable from 0 Hz to frequencies at which the transmission line structure can support higher order non-TEM modes. The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time. The resulting time domain equations are partial differential equations of both time and distance. In the frequency domain the independent variables are distance and either frequency, or complex frequency, The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time domain variables or they can be taken to be phasors. The resulting frequency domain equations are ordinary differential equations of distance. An advantage of the frequency domain approach is that differential operators in the time domain become algebraic operations in frequency domain.

Acoustic waves are a type of energy propagation through a medium by means of adiabatic loading and unloading. Important quantities for describing acoustic waves are acoustic pressure, particle velocity, particle displacement and acoustic intensity. Acoustic waves travel with a characteristic acoustic velocity that depends on the medium they're passing through. Some examples of acoustic waves are audible sound from a speaker, seismic waves, or ultrasound used for medical imaging.

An all-pass filter is a signal processing filter that passes all frequencies equally in gain, but changes the phase relationship among various frequencies. Most types of filter reduce the amplitude of the signal applied to it for some values of frequency, whereas the all-pass filter allows all frequencies through without changes in level.

<span class="mw-page-title-main">Benjamin–Bona–Mahony equation</span>

The Benjamin–Bona–Mahony equation is the partial differential equation

<span class="mw-page-title-main">Reflections of signals on conducting lines</span> Electrical waves in return direction

A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.

<span class="mw-page-title-main">Primary line constants</span> Parameters of transmission lines

The primary line constants are parameters that describe the characteristics of conductive transmission lines, such as pairs of copper wires, in terms of the physical electrical properties of the line. The primary line constants are only relevant to transmission lines and are to be contrasted with the secondary line constants, which can be derived from them, and are more generally applicable. The secondary line constants can be used, for instance, to compare the characteristics of a waveguide to a copper line, whereas the primary constants have no meaning for a waveguide.

References

  1. 1 2 Nave, C.R. "Reflection Phase Change". Hyperphysics. Georgia State University. Retrieved 2016-03-28.
  2. 1 2 3 Nave, C.R. "Reflection of Sound". Hyperphysics. Georgia State University. Retrieved 2016-03-28.
  3. 1 2 Russell, Daniel A. "Reflection of Waves from Boundaries". Graduate Program in Acoustics. Pennsylvania State University. Retrieved 2021-05-12.
  4. Byrnes, Steven J. (2016). "Multilayer optical calculations". arXiv: 1603.02720 [physics.comp-ph]. Appendix A
  5. 1 2 Bleaney, B.I. & Bleaney, Brebis (2013). Electricity and Magnetism. Vol. 1. Oxford University Press. ISBN   978-0199645428.