Monopole antenna

Last updated

A typical mast radiator monopole antenna of an AM radio station in Chapel Hill, North Carolina. The mast itself is connected to the transmitter and radiates the radio waves. It is mounted on a ceramic insulator to isolate it from the ground. The other terminal of the transmitter is connected to a ground system consisting of cables buried under the field. 2008-07-28 Mast radiator.jpg
A typical mast radiator monopole antenna of an AM radio station in Chapel Hill, North Carolina. The mast itself is connected to the transmitter and radiates the radio waves. It is mounted on a ceramic insulator to isolate it from the ground. The other terminal of the transmitter is connected to a ground system consisting of cables buried under the field.

A monopole antenna is a class of radio antenna consisting of a straight rod-shaped conductor, often mounted perpendicularly over some type of conductive surface, called a ground plane. [1] [2] [3] The driving signal from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the lower end of the monopole and the ground plane. One side of the antenna feedline is attached to the lower end of the monopole, and the other side is attached to the ground plane, which is often the Earth. This contrasts with a dipole antenna which consists of two identical rod conductors, with the signal from the transmitter applied between the two halves of the antenna.

Contents

The monopole is often used as a resonant antenna. The rod functions as an open resonator for radio waves and oscillates with standing waves of voltage and current along its length. The length of the antenna, therefore, is determined based on the wavelength of the desired radio waves. The most common form is the quarter-wave monopole, in which the antenna length is approximately one quarter of the wavelength of the radio waves. In broadcasting monopole antennas, however, a length equal to 5/8 wavelength are also popular because at this length a monopole radiates a maximum amount of its power in horizontal directions. The monopole antenna was invented in 1895 by radio pioneer Guglielmo Marconi; for this reason it is sometimes called the Marconi antenna. [4] [5] [6]

The load impedance of the quarter-wave monopole is half that of the dipole antenna or 37.5  Ohms.

Common types of monopole antenna are

History

US patent 586193 Marconi TRANSMITTING ELECTRICAL SIGNALS Dec 7 1896 fig 10&11.png
Drawing from Marconi's 1896 patent [7] showing his first monopole antennas, consisting of suspended metal plates (u,w) attached to the transmitter (left) and receiver (right), with the other side grounded (E). Later he found that the plates were unnecessary and a suspended wire was adequate.
Marconi's first radio transmitter.jpg
Marconi's first monopole transmitter
Marconi transmitting station Poldhu Cornwall 1900.jpg
One of Marconi's early monopole antennas at his Poldhu, Cornwall transmitting station, 1900, consisting of a small metal plate suspended from a wooden arm with a long wire running down to the transmitter in the building.

The monopole antenna was invented in 1895 and patented in 1896 [7] by radio pioneer Guglielmo Marconi during his historic first experiments in radio communication. He began by using dipole antennas invented by Heinrich Hertz consisting of two identical horizontal wires ending in metal plates. He found by experiment that if instead of the dipole, one side of the transmitter and receiver was connected to a wire suspended overhead, and the other side was connected to the Earth, he could transmit for longer distances. For this reason the monopole is also called a Marconi antenna, [4] [5] [6] although Alexander Popov independently invented it at about the same time. [8] [9] [10] [11]

Radiation pattern

Showing the monopole antenna has the same radiation pattern over perfect ground as a dipole in free space with twice the voltage Monopole and image antenna.svg
Showing the monopole antenna has the same radiation pattern over perfect ground as a dipole in free space with twice the voltage
Vertical radiation patterns of ideal monopole antennas over a perfect infinite ground. The distance of the line from the origin at a given elevation angle is proportional to the power density radiated at that angle. Monopole antenna radiation patterns.svg
Vertical radiation patterns of ideal monopole antennas over a perfect infinite ground. The distance of the line from the origin at a given elevation angle is proportional to the power density radiated at that angle.

Like a vertically suspended dipole antenna, a monopole has an omnidirectional radiation pattern: It radiates with equal power in all azimuthal directions perpendicular to the antenna. The radiated power varies with elevation angle, with the radiation dropping off to zero at the zenith on the antenna axis. It radiates vertically polarized radio waves. Since vertical halfwave dipoles must have their center raised at least a quarter wave above the ground, whereas monopoles must be mounted directly on the ground, the monopoles' radiation patterns are more greatly affected by resistance in the earth, and the radiation pattern with elevation inherently differs.

A monopole can be visualized (right) as being formed by replacing the bottom half of a vertical dipole antenna (c) with a conducting plane (ground plane) at right-angles to the remaining half. If the ground plane is large enough, the radio waves from the remaining upper half of the dipole (a) reflected from the ground plane will seem to come from an image antenna (b) forming the missing half of the dipole, which adds to the direct radiation to form a dipole radiation pattern. So the pattern of a monopole with a perfectly conducting, infinite ground plane is identical to the top half of a dipole pattern.

Up to a length of a half-wavelength () the antenna has a single lobe with maximum gain in horizontal directions, perpendicular to the antenna axis. Below the quarter wavelength () resonance the radiation pattern is nearly constant with length. Above () the lobe flattens, radiating more power in horizontal directions.

Above a half-wavelength the pattern splits into a horizontal main lobe and a small second conical lobe at an angle of 60° elevation into the sky. However, the horizontal gain keeps increasing and reaches a maximum at a length of five-eighths wavelength: (this is an approximation valid for a typical thickness antenna, for an infinitely thin monopole the maximum occurs at ). The maximum occurs at this length because the opposite phase radiation from the two lobes interferes destructively and cancels at high angles, "compressing" more of the power into the horizontal lobe.

Slightly above the horizontal lobe rapidly gets smaller and the high angle lobe gets larger, reducing power radiated in horizontal directions, and hence reducing gain. Because of this, not many antennas use lengths above or 0.625  wave. As the antenna is made longer, the pattern divides into more lobes, with nulls (directions of zero radiated power) between them.

The general effect of electrically small ground planes, as well as imperfectly conducting earth grounds, is to tilt the direction of maximum radiation up to higher elevation angles and reduce the gain. [12] The gain of actual quarter wave antennas with typical ground systems is around 2–3 dBi.

Gain and input impedance

Multi-lobed radiation pattern of a
3/ 2 wavelength monopole. Monopole antennas up to
1/ 2 wavelength long have a single "lobe", with field strength declining monotonically from a maximum in the horizontal direction, but longer monopoles have more complicated patterns with several conical "lobes" (radiation maxima) directed at angles into the sky. Vpol dual band blade antenna blade L1 3D.jpg
Multi-lobed radiation pattern of a 3/ 2  wavelength monopole. Monopole antennas up to 1/ 2  wavelength long have a single "lobe", with field strength declining monotonically from a maximum in the horizontal direction, but longer monopoles have more complicated patterns with several conical "lobes" (radiation maxima) directed at angles into the sky.

Because it radiates only into the space above the ground plane, or half the space of a dipole antenna, a monopole antenna over a perfectly conducting infinite ground plane will have a gain of twice (3  dB greater than) the gain of a similar dipole antenna, and a radiation resistance half that of a dipole. Since a half-wave dipole has a gain of 2.19  dBi and a radiation resistance of 73 Ohms, a quarter-wave (1/ 4 λ) monopole will have a gain of 2.19 + 3.0 = 5.2 dBi and a radiation resistance of about 36.5 Ohms. [13] The antenna is resonant at this length, so its input impedance is purely resistive. The input impedance has capacitive reactance below 1/ 4 λ and inductive reactance from 1/ 4  to 1/ 2 λ .

The gains given in this section are only achieved if the antenna is mounted over a perfectly conducting infinite ground plane. With typical artificial ground planes smaller than several wavelengths, the gain will be 1 to 3 dBi lower, because some of the horizontal radiated power will diffract around the plane edge into the lower half space, where it dissipates in the soil. Similarly over a resistive earth ground, the gain will be lower due to power absorbed in the earth.

As the length is increased to approach a half-wavelength (1/ 2  λ) – the next resonant length – the gain increases some, to 6.0  dBi. Since at this length the antenna has a current node at its feedpoint, the input impedance is very high. A hypothetical infinitesimally thin antenna would have infinite impedance, but for finite thickness of typical monopoles it is around 800–2,000 Ohms; high, but manageable by feeding through a substantial step-up transformer.

The horizontal gain continues to increase up to a maximum of about 6.6  dBi at a length of five-eighths wavelength 5/ 8 λ so this is a popular length for ground wave antennas and terrestrial communication antennas, for frequencies where a larger antenna size is feasible. The input impedance drops to about 40 Ohms at that length. The antenna's reactance is capacitive from 1/ 2  to 3/ 4 λ . However, above 5/ 8 λ the horizontal gain drops rapidly because progressively more power is radiated at high elevation angles in the second lobe.

Types

VHF ground plane antenna, a type of monopole antenna used at high frequencies. The three conductors projecting downward are the ground plane Antenne gp vhf 3.jpg
VHF ground plane antenna, a type of monopole antenna used at high frequencies. The three conductors projecting downward are the ground plane

For monopole antennas operating at lower frequencies, below 20 MHz, the ground plane is usually the Earth; in this case the antenna is a vertical mast mounted on the ground on an insulator to isolate it electrically from the ground. One side of the feedline is connected to the mast and the other to an Earth ground at the base of the antenna. In transmitting antennas to reduce ground resistance this is often a radial network of buried wires stretching outward from a terminal near the base of the antenna. This design is used for the mast radiator transmitting antennas employed for radio broadcasting in the MF and LF bands. At lower frequencies the antenna mast is electrically short giving it a very small radiation resistance, so to increase efficiency and radiated power capacitively toploaded monopoles such as the T-antenna and umbrella antenna are used.

At VHF and UHF frequencies the size of the ground plane needed is smaller, so artificial ground planes are used to allow the antenna to be mounted above the ground. [14] A common type of monopole antenna at these frequencies for mounting on masts or structures consists of a quarter-wave whip antenna with a ground plane consisting of 3 or 4 wires or rods a quarter-wave long radiating horizontally or diagonally from its base connected to the ground side of the feedline; this is called a ground-plane antenna. At gigahertz frequencies the metal surface of a car roof or airplane body makes a good ground plane, so car cell phone antennas consist of short whips mounted on the roof, [14] and aircraft communication antennas frequently consist of a short conductor in an aerodynamic fairing projecting from the fuselage; this is called a blade antenna. [13]

The quarter-wave whip and rubber ducky antennas used with handheld radios such as walkie-talkies and portable FM radios are also monopole antennas. In these portable devices the antenna does not have an effective ground plane, the ground side of the transmitter is just connected to the ground connection on its circuit board. Since the circuit board ground is often smaller than the antenna, the antenna and ground combination may function more as an asymmetrical dipole antenna than a monopole. The hand and body of the person holding them may function as a rudimentary ground plane.

Wireless devices and cell phones use a monopole variant called the inverted-F antenna. [15] The monopole element is bent over parallel to the ground area on the circuit board, so it can be enclosed in the device case; usually the antenna is fabricated of copper foil on the printed circuit board itself. [15] [16] This geometry would give the antenna a very low impedance if it was driven at the base. To improve the impedance match with the feed circuit (typically 50  Ohms impedance) the antenna is shunt fed, the feedline is instead connected to an intermediate point along the element, and the element end is grounded.

See also

Related Research Articles

In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.

In electrical engineering, a ground plane is an electrically conductive surface, usually connected to electrical ground.

<span class="mw-page-title-main">Radiation pattern</span> Directional variation in strength of radio waves

In the field of antenna design the term radiation pattern refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other source.

<span class="mw-page-title-main">Antenna (radio)</span> Electrical device

In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

<span class="mw-page-title-main">Omnidirectional antenna</span> Radio antenna that sends signals in every direction

In radio communication, an omnidirectional antenna is a class of antenna which radiates equal radio power in all directions perpendicular to an axis, with power varying with angle to the axis, declining to zero on the axis. When graphed in three dimensions (see graph) this radiation pattern is often described as doughnut-shaped. This is different from an isotropic antenna, which radiates equal power in all directions, having a spherical radiation pattern. Omnidirectional antennas oriented vertically are widely used for nondirectional antennas on the surface of the Earth because they radiate equally in all horizontal directions, while the power radiated drops off with elevation angle so little radio energy is aimed into the sky or down toward the earth and wasted. Omnidirectional antennas are widely used for radio broadcasting antennas, and in mobile devices that use radio such as cell phones, FM radios, walkie-talkies, wireless computer networks, cordless phones, GPS, as well as for base stations that communicate with mobile radios, such as police and taxi dispatchers and aircraft communications.

Radiation resistance is that part of an antenna's feedpoint electrical resistance caused by the emission of radio waves from the antenna. In radio transmission, a radio transmitter is connected to an antenna. The transmitter generates a radio frequency alternating current which is applied to the antenna, and the antenna radiates the energy in the alternating current as radio waves. Because the antenna is absorbing the energy it is radiating from the transmitter, the antenna's input terminals present a resistance to the current from the transmitter.

<span class="mw-page-title-main">Helical antenna</span> Type of antenna

A helical antenna is an antenna consisting of one or more conducting wires wound in the form of a helix. A helical antenna made of one helical wire, the most common type, is called monofilar, while antennas with two or four wires in a helix are called bifilar, or quadrifilar, respectively.

<span class="mw-page-title-main">Dipole antenna</span> Antenna consisting of two rod shaped conductors

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets.

<span class="mw-page-title-main">Whip antenna</span> Type of radio antenna

A whip antenna is an antenna consisting of a straight flexible wire or rod. The bottom end of the whip is connected to the radio receiver or transmitter. A whip antenna is a form of monopole antenna. The antenna is designed to be flexible so that it does not break easily, and the name is derived from the whip-like motion that it exhibits when disturbed. Whip antennas for portable radios are often made of a series of interlocking telescoping metal tubes, so they can be retracted when not in use. Longer whips, made for mounting on vehicles and structures, are made of a flexible fiberglass rod around a wire core and can be up to 11 m long.

<span class="mw-page-title-main">Beverage antenna</span> Type of radio antenna

The Beverage antenna or "wave antenna" is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. It is used by amateur radio, shortwave listening, and longwave radio DXers and military applications.

<span class="mw-page-title-main">Mast radiator</span> Type of radio frequency antenna

A mast radiator is a radio mast or tower in which the metal structure itself is energized and functions as an antenna. This design, first used widely in the 1930s, is commonly used for transmitting antennas operating at low frequencies, in the LF and MF bands, in particular those used for AM radio broadcasting stations. The conductive steel mast is electrically connected to the transmitter. Its base is usually mounted on a nonconductive support to insulate it from the ground. A mast radiator is a form of monopole antenna.

<span class="mw-page-title-main">T-antenna</span> Type of radio antenna

A ‘T’-antenna, ‘T’-aerial, or flat-top antenna is a monopole radio antenna consisting of one or more horizontal wires suspended between two supporting radio masts or buildings and insulated from them at the ends. A vertical wire is connected to the center of the horizontal wires and hangs down close to the ground, connected to the transmitter or receiver. The shape of the antenna resembles the letter "T", hence the name. The transmitter power is applied, or the receiver is connected, between the bottom of the vertical wire and a ground connection.

<span class="mw-page-title-main">J-pole antenna</span>

The J-pole antenna, more properly known as the J antenna, is a vertical omnidirectional transmitting antenna used in the shortwave frequency bands. It was invented by Hans Beggerow in 1909 for use in Zeppelin airships. Trailed behind the airship, it consisted of a single one half wavelength long wire radiator, in series with a quarter-wave parallel transmission line tuning stub that matches the antenna impedance to the feedline. By 1936 this antenna began to be used for land-based transmitters with the radiating element and the matching section mounted vertically, giving it the shape of the letter "J", and by 1943 it was named the J antenna. When the radiating half-wave section is mounted horizontally, at right-angles to the quarter-wave matching stub, the variation is usually called a Zepp antenna.

A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor, that for transmitting is usually fed by a balanced power source or for receiving feeds a balanced load. Within this physical description there are two distinct types:

<span class="mw-page-title-main">Folded unipole antenna</span> Antenna used for radio broadcasts

The folded unipole antenna is a type of monopole mast radiator antenna used as a transmitting antenna mainly in the medium wave band for AM radio broadcasting stations. It consists of a vertical metal rod or mast mounted over and connected at its base to a grounding system consisting of buried wires. The mast is surrounded by a "skirt" of vertical wires electrically attached at or near the top of the mast. The skirt wires are connected by a metal ring near the mast base, and the feedline feeding power from the transmitter is connected between the ring and the ground.

<span class="mw-page-title-main">Random wire antenna</span> A radio antenna consisting of a long wire suspended above the ground

A random wire antenna is a radio antenna consisting of a long wire suspended above the ground, whose length does not bear a particular relation to the wavelength of the radio waves used, but is typically chosen more for convenient fit between the available supports, or the length of wire at hand, rather than selecting length to be resonant on any particular frequency. The wire may be straight or it may be strung back and forth between trees or walls just to get enough wire into the air. Due to the great variability of the (unplanned) antenna structure, effectiveness can vary widely from one installation to another. Random wire antennas are typically fed at one end against a suitable counterpoise.

<span class="mw-page-title-main">Dual-band blade antenna</span>

A dual-band blade antenna is a type of blade antenna, a monopole whip antenna mounted on the outside of an aircraft in the form of a blade-shaped aerodynamic fairing to reduce its air drag. It is used by avionics radio communication systems. The dual band type uses a "plane and slot" design to get efficient omni-directional coverage so that it can operate on two different radio bands.

<span class="mw-page-title-main">Halo antenna</span> Omnidirectional circular bent dipole antenna

A halo antenna, or halo, is a center-fed  1 /2 wavelength dipole antenna, which has been bent into a circle, with a break directly opposite the feed point. The dipole's ends are close, but do not touch, and their crossections may be broadened to form an air capacitor, whose spacing is used to adjust the antenna's resonant frequency. Most often mounted horizontally, this antenna's radiation is then approximately omnidirectional and horizontally polarized.

<span class="mw-page-title-main">Antenna array</span> Set of multiple antennas which work together

An antenna array is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas are usually connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together to enhance the power radiated in desired directions, and cancelling to reduce the power radiated in other directions. Similarly, when used for receiving, the separate radio frequency currents from the individual antennas combine in the receiver with the correct phase relationship to enhance signals received from the desired directions and cancel signals from undesired directions. More sophisticated array antennas may have multiple transmitter or receiver modules, each connected to a separate antenna element or group of elements.

In radio systems, many different antenna types are used whose properties are especially crafted for particular applications. Antennas can be classified in various ways. The list below groups together antennas under common operating principles, following the way antennas are classified in many engineering textbooks.

References

  1. Poisel, Richard (2012). Antenna Systems and Electronic Warfare Applications. Artech House. p. 223. ISBN   9781608074846 via Google Books.
  2. Bevelacqua, Peter J. (2016). "The Monopole Antenna". Antenna Types. Antenna-Theory.com website. Retrieved 20 August 2020.
  3. Straw, R. Dean; et al., eds. (2000). The ARRL Antenna Book (19th ed.). American Radio Relay League. p. 2.17. ISBN   9780872598041 via Google Books.
  4. 1 2 Das, Sisir K. (2016). Antenna and Wave Propagation. Tata McGraw-Hill Education. p. 116. ISBN   978-1259006326 via Google Books.
  5. 1 2 Wong, K. Daniel (2011). Fundamentals of Wireless Communication Engineering Technologies. John Wiley and Sons. p. 94. ISBN   978-1118121092 via Google Books.
  6. 1 2 Kishore, Kamal (2009). Antenna and Wave Propagation. IK International Ltd. p. 93. ISBN   978-9380026060 via Google Books.
  7. 1 2 US patent 586193, Guglielmo Marconi Transmitting electrical signals , filed December 7, 1896, granted July 13, 1897
  8. Visser, Hubregt J. (2006). Array and Phased Array Antenna Basics. John Wiley and Sons. p. 31. ISBN   0470871180 via Google Books.
  9. Howeth, L.S. (1963). The History of Communications - Electronics in the U.S. Navy. U.S. Navy. p.  19.
  10. Meinel, Christoph; Sack, Harald (2014). Digital Communication: Communication, Multimedia, Security. Springer Science and Business Media. p. 55. ISBN   978-3642543319.
  11. Stutzman, Warren L.; Thiele, Gary A. (2012). Antenna Theory and Design. John Wiley and Sons. p. 8. ISBN   978-0470576649 via Google Books.
  12. Weiner, Melvin M. (2003). Monopole Antennas. Boca Raton, FL: CRC Press. p. vi. ISBN   0-8247-4844-1 via Google Books.
  13. 1 2 Macnamara, Thereza (2010). Introduction to Antenna Placement and Installation. John Wiley and Sons. p. 145. ISBN   978-0-470-01981-8 via Google Books.
  14. 1 2 Kissick, W. A. (April 2001). Antenna System Guide. U.S. National Institute of Standards and Technology (NIST) for National Institute of Justice, US Dept. of Justice. pp. 17–19. NIJ Guide 202-00 via Google Books.
  15. 1 2 Chen, Zhi Ning; Chia, Michael Yan Wah (2006). Broadband Planar Antennas: Design and applications. John Wiley and Sons. pp. 135–138. ISBN   9780470871751 via Google Books.
  16. Bevelacqua, Peter J. (2016). "Inverted F Antenna". antenna-theory.com website. Antenna Tutorial. Retrieved 8 June 2021.