Two-way radio

Last updated
Naval air traffic controller communicates with aircraft over a two-way radio headset US Navy 091101-N-8960W-009 Air Traffic Controller 3rd Class Elliott Young, assigned to the aircraft carrier USS Nimitz (CVN 68), performs a traffic call to departing aircraft.jpg
Naval air traffic controller communicates with aircraft over a two-way radio headset
A variety of portable handheld two-way radios for private use Recreational Walkie Talkies.jpg
A variety of portable handheld two-way radios for private use

A two-way radio is a radio transceiver (a radio that can both transmit and receive radio waves), which is used for bidirectional person-to-person voice communication with other users with similar radios, [1] in contrast to a broadcast receiver, which only receives transmissions.

Contents

Two-way radios usually use a half-duplex communication channel, which permits two-way communication, albeit with the limitation that only one user can transmit at a time. (This is in contrast to simplex communication, in which transmission can only be sent in one direction, and full-duplex, which allows transmission in both directions simultaneously.) This requires users in a group to take turns talking. The radio is normally in receive mode so the user can hear all other transmissions on the channel. When the user wants to talk, they press a "push-to-talk" button, which turns off the receiver and turns on the transmitter; when the button is released, the receiver is activated again. Multiple channels are provided so separate user groups can communicate in the same area without interfering with each other and some radios are designed to scan the channels in order to find a valid transmission. Other two-way radio systems operate in full-duplex mode, in which both parties can talk simultaneously. This requires either two separate radio channels or channel sharing methods such as time-division duplex (TDD) to carry the two directions of the conversation simultaneously on a single radio frequency. [2]

The first two-way radio was an AM-only device introduced by the Galvin Manufacturing Corporation in 1940 for use by the police and military during World War II, and followed by the company's 1943 introduction of the Walkie-Talkie, [3] the best-known example of a two-way radio. [4]

History

VHF marine radio on a ship Maritime VHF Sailor type.jpg
VHF marine radio on a ship
Two-way radio in a fire truck used by firefighters to communicate with their dispatcher Ascon SE 660 radio.jpg
Two-way radio in a fire truck used by firefighters to communicate with their dispatcher

The first truly mobile two-way radio equipment was developed in Australia in 1923 by Senior Constable Frederick William Downie of the Victorian Police. The Victoria Police were the first in the world to use wireless communication in cars, putting an end to the inefficient status reports via public telephone boxes which had been used until that time. The first sets occupied about half of the floor in the back seat of the Lancia patrol cars. [5]

In 1933, the Bayonne, New Jersey police department successfully operated a two-way system between a central fixed station and radio transceivers installed in police cars; this allowed rapidly directing police response in emergencies. [6]

Types

Several portable two-way radios designed for public services (police, fire, rescue) compatible with the Project 25 digital radio standard P25 hand-held radios.jpg
Several portable two-way radios designed for public services (police, fire, rescue) compatible with the Project 25 digital radio standard
A mobile Citizen's band radio in a truck CB-Funkgerat im LKW.JPG
A mobile Citizen's band radio in a truck

Two-way radio systems can be classified in several ways depending on their attributes.

Conventional versus trunked

Conventional

In multi-channel systems, channels are used for separate purposes. [7]

Scanning in conventional radios

Scan features are either not used or scan lists are intentionally kept short in emergency applications. Part of APCO Project 16 set standards for channel access times and delays caused by system overhead. Scan features can further increase these delays. One study said delays of longer than 0.4 seconds (400 milliseconds) in emergency services are not recommended. [8]

Duplex

The term "half duplex" is applied to wired communication systems where the circuit can send information in one direction at a time but not both directions at the same time. [9]

  • Advantage: duplex channels usually allow repeater operation which extends range (in most cases due to increased transmit power and improved aerial location / height) – especially where hand-held radios are in use.
  • Disadvantage: If a radio cannot reach the repeater, it cannot communicate. This can be mitigated with a "talk around" or "car to car" setting where stations out of range of the base can speak directly to each other, alternating transmitting and receiving roles in simplex fashion on a single frequency. [10]

Analog

Analog systems may communicate a single condition, such as water level in a livestock tank. A transmitter at the tank site continually sends a signal with a constant audio tone. The tone would change in pitch to indicate the tank's water level. A meter at the remote end would vary, corresponding to the tone pitch, to indicate the amount of water present in the livestock tank. Similar methods can be used to telemeter any analog condition. This type of radio system serves a purpose equivalent to a four-to-twenty milliampere loop. [11] In the US, mid-band 72–76 MHz or UHF 450–470 MHz interstitial channels are often used for these systems. Some systems multiplex telemetry of several analog conditions by limiting each to a separate range of tone pitches, for example. [12]

Digital

Digital systems may communicate text messages from computer-aided dispatch (CAD). For example, a display in a tow truck may give a textual location for a call and any related details. The tow truck driver may press an acknowledge button, sending data in the opposite direction and flagging the call as received by the driver. They can be used for analog telemetry systems, such as the livestock tank levels, as described above. Another possibility is the lubricating oil pressure in a transit bus engine, or the current speed of the bus. Analog conditions are translated into data words. Some systems send radio paging messages which can either 1) beep a paging receiver, 2) send a numeric message, or 3) send a text message. [13]

Engineered versus not engineered

Engineered systems are designed to perform close to a specification or standard.[ citation needed ] They are designed as systems with all equipment matched to perform together. For example, a modern, local government two-way radio system in the US may be designed to provide 95% area coverage in an urban area. System designers use radio frequency models, terrain models, and signal propagation modeling software in an attempt to accurately estimate where radios will work within a defined geographic area. The models help designers choose equipment, equipment locations, antennas, and estimate how well signals will penetrate buildings. These models will be backed-up by drive testing and actual field signal level measurements. Designers adjust antenna patterns, add or move equipment sites, and design antenna networks in a way that will accomplish the intended level of performance. [14]

Options, duty cycle, and configuration

Example of control arrangement on a configured P25-capable hand-held radio. Motorola hand-held.jpg
Example of control arrangement on a configured P25-capable hand-held radio.

Many mobile and handhelds have a limited duty cycle. Duty Cycle is the ratio of listening time to transmit time and is generally dependent on how well the transmitter can shed the heat from the heat sink on the rear of the radio. A 10% duty cycle (common on handhelds) translates to 10 seconds of transmit time to 90 seconds of receive time. Some mobile and base equipment is specified at different power levels – for example 100% duty cycle at 25 watts and 15% at 40 watts. [15]

Motorola MOTOTRBO Repeater DR3000 with duplexer mounted in Flightcase, 100% Duty cycle up to 40 W output Motorola-DR3000.jpg
Motorola MOTOTRBO Repeater DR3000 with duplexer mounted in Flightcase, 100% Duty cycle up to 40 W output

Life of equipment

In government systems, equipment may be replaced based on budgeting rather than any plan or expected service life. Funding in government agencies may be cyclical or sporadic. Managers may replace computing systems, vehicles, or budget computer and vehicle support costs while ignoring two-way radio equipment. Equipment may remain in use even though maintenance costs are unreasonable when viewed from an efficiency standpoint. [16]

One document says "seven years" is beyond the expected lifetime of walkie-talkies in police service. Batteries are cited as needing replacement more often. Twelve-year-old dispatch consoles mentioned in the same document were identified as usable. These were compared to problematic 21-year-old consoles used elsewhere in the same system. [17]

Another source says system backbone equipment like consoles and base stations are expected to have a fifteen-year life. Mobile radios are expected to last ten years. Walkie talkies typically last eight. [18] In a State of California document, the Department of General Services reports expected service life for a communications console used in the Department of Forestry and Fire Protection is 10 years. [19]

Two-way radio frequencies

Two GMRS radios, a hand mic, and two FRS radios Various Radios & head unit.jpg
Two GMRS radios, a hand mic, and two FRS radios

Typical two-way radios work on fixed radio frequency channels, though some can scan multiple channels in order to find a valid transmission. [4] [ unreliable source? ] In an analog, conventional system, (the simplest type of system) a frequency or channel serves as a physical medium or link carrying communicated information. The performance of a radio system is partly dependent on the characteristics of frequency band used. The selection of a frequency for a two-way radio system is affected, in part, by: [20]

UHF versus VHF

The most common two-way radio systems operate in the VHF and UHF parts of the radio spectrum. Because this part of the spectrum is heavily used for broadcasting and multiple competing uses, spectrum management has become an important activity of governments to regulate radio users in the interests of both efficient and non-interfering use of radio. Both bands are widely applied for different users. [21]

Range

The useful direct range of a two-way radio system depends on radio propagation conditions, which are a function of frequency. [22]

There are other factors that affect the range of a two-way radio such as weather, exact frequency used, and obstructions. [22] [23]

See also

Related Research Articles

A communications system or communication system is a collection of individual telecommunications networks systems, relay stations, tributary stations, and terminal equipment usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in union.

In radio communication, a transceiver is an electronic device which is a combination of a radio transmitter and a receiver, hence the name. It can both transmit and receive radio waves using an antenna, for communication purposes. These two related functions are often combined in a single device to reduce manufacturing costs. The term is also used for other devices which can both transmit and receive through a communications channel, such as optical transceivers which transmit and receive light in optical fiber systems, and bus transceivers which transmit and receive digital data in computer data buses.

<span class="mw-page-title-main">Frequency-division multiplexing</span> Signal processing technique in telecommunications

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

<span class="mw-page-title-main">Radiotelephone</span> Communications system for transmission of speech over radio

A radiotelephone, abbreviated RT, is a radio communication system for conducting a conversation; radiotelephony means telephony by radio. It is in contrast to radiotelegraphy, which is radio transmission of telegrams (messages), or television, transmission of moving pictures and sound. The term is related to radio broadcasting, which transmit audio one way to listeners. Radiotelephony refers specifically to two-way radio systems for bidirectional person-to-person voice communication between separated users, such as CB radio or marine radio. In spite of the name, radiotelephony systems are not necessarily connected to or have anything to do with the telephone network, and in some radio services, including GMRS, interconnection is prohibited.

<span class="mw-page-title-main">Base station</span> Type of radio station

Base station is – according to the International Telecommunication Union's (ITU) Radio Regulations (RR) – a "land station in the land mobile service."

<span class="mw-page-title-main">Professional mobile radio</span> Field radio communications systems

Professional mobile radio are person-to-person two-way radio voice communications systems which use portable, mobile, base station, and dispatch console radios. PMR systems are based on such standards as MPT-1327, TETRA, APCO 25, and DMR which are designed for dedicated use by specific organizations, or standards such as NXDN intended for general commercial use. These systems are used by police, fire, ambulance, and emergency services, and by commercial firms such as taxis and delivery services. Most systems are half-duplex, in which multiple radios share a common radio channel, and only one can transmit at a time. Transceivers are normally in receive mode, the user presses a push-to-talk button on his microphone when he wants to talk, which turns on his transmitter and turns off his receiver. They use channels in the VHF and UHF bands, giving them a limited range, usually 3 to 20 miles depending on terrain. Output power is typically limited to 4 watts. Repeaters installed on tall buildings, hills or mountain peaks are used to increase the range of systems.

<span class="mw-page-title-main">Cordless telephone</span> Portable telephone that connects to a landline

A cordless telephone or portable telephone has a portable telephone handset that connects by radio to a base station connected to the public telephone network. The operational range is limited, usually to the same building or within some short distance from the base station.

<span class="mw-page-title-main">Project 25</span> Set of Telecommunications Standards

Project 25 is a suite of standards for interoperable digital two-way radio products. P25 was developed by public safety professionals in North America and has gained acceptance for public safety, security, public service, and commercial applications worldwide. P25 radios are a direct replacement for analog UHF radios, adding the ability to transfer data as well as voice for more natural implementations of encryption and text messaging. P25 radios are commonly implemented by dispatch organizations, such as police, fire, ambulance and emergency rescue service, using vehicle-mounted radios combined with repeaters and handheld walkie-talkie use.

The 33-centimeter or 900 MHz band is a portion of the UHF radio spectrum internationally allocated to amateur radio on a secondary basis. It ranges from 902 to 928 MHz and is unique to ITU Region 2 (Americas). It is primarily used for very local communications as opposed to bands lower in frequency. However, very high antennas with high gain have shown 33 centimeters can provide good long-range communications almost equal to systems on lower frequencies such as the 70 centimeter band. The band is also used by industrial, scientific, and medical (ISM) equipment, as well as low-powered unlicensed devices. Amateur stations must accept harmful interference caused by ISM users but may receive protection from unlicensed devices.

<span class="mw-page-title-main">Mobile radio telephone</span> Family of pre-cellular PSTN wireless communication technologies

Mobile radio telephone systems were mobile telephony systems that preceded modern cellular network technology. Since they were the predecessors of the first generation of cellular telephones, these systems are sometimes retroactively referred to as pre-cellular systems. Technologies used in pre-cellular systems included the Push-to-talk, Mobile Telephone Service (MTS), Improved Mobile Telephone Service (IMTS), and Advanced Mobile Telephone System (AMTS) systems. These early mobile telephone systems can be distinguished from earlier closed radiotelephone systems in that they were available as a commercial service that was part of the public switched telephone network, with their own telephone numbers, rather than part of a closed network such as a police radio or taxi dispatching system.

<span class="mw-page-title-main">Trunked radio system</span> Class of a radio system

A trunked radio system is a two-way radio system that uses a control channel to automatically assign frequency channels to groups of user radios. In a traditional half-duplex land mobile radio system a group of users with mobile and portable two-way radios communicate over a single shared radio channel, with one user at a time talking. These systems typically have access to multiple channels, up to 40-60, so multiple groups in the same area can communicate simultaneously. In a conventional (non-trunked) system, channel selection is done manually; before use, the group must decide which channel to use, and manually switch all the radios to that channel. This is an inefficient use of scarce radio channel resources because the user group must have exclusive use of their channel regardless of how much or how little they are transmitting. There is also nothing to prevent multiple groups in the same area from choosing the same channel, causing conflicts and 'cross-talk'. A trunked radio system is an advanced alternative in which the channel selection process is done automatically, so as to avoid channel conflicts and maintain frequency efficiency across multiple talkgroups. This process is handed by what is essentially a central radio traffic controller, a function automatically handled by a computer system.

A duplex communication system is a point-to-point system composed of two or more connected parties or devices that can communicate with one another in both directions. Duplex systems are employed in many communications networks, either to allow for simultaneous communication in both directions between two connected parties or to provide a reverse path for the monitoring and remote adjustment of equipment in the field. There are two types of duplex communication systems: full-duplex (FDX) and half-duplex (HDX).

Diversity combining is the technique applied to combine the multiple received signals of a diversity reception device into a single improved signal.

MOTO Talk is a feature on some Motorola iDEN cellular phone handsets which allows users to make short-range 'push-to-talk' calls to other such handsets without being on the iDEN network. This feature goes by different names on iDEN service providers. In the US, Nextel called it 'DirectTalk' and included it as a free service on most new models of Motorola handsets. Boost Mobile disabled the function via handset software settings. SouthernLINC calls it LINCaround and ships handsets with the feature disabled. It can be enabled after paying an activation fee of $20. In Canada, TELUS calls it "Mike's Talk-Around."

<span class="mw-page-title-main">Amateur radio repeater</span> Combined receiver and transmitter

An amateur radio repeater is an electronic device that receives a weak or low-level amateur radio signal and retransmits it at a higher level or higher power, so that the signal can cover longer distances without degradation. Many repeaters are located on hilltops or on tall buildings as the higher location increases their coverage area, sometimes referred to as the radio horizon, or "footprint". Amateur radio repeaters are similar in concept to those used by public safety entities, businesses, government, military, and more. Amateur radio repeaters may even use commercially packaged repeater systems that have been adjusted to operate within amateur radio frequency bands, but more often amateur repeaters are assembled from receivers, transmitters, controllers, power supplies, antennas, and other components, from various sources.

<span class="mw-page-title-main">Radio repeater</span> Radio signal retransmitter

A radio repeater is a combination of a radio receiver and a radio transmitter that receives a signal and retransmits it, so that two-way radio signals can cover longer distances. A repeater sited at a high elevation can allow two mobile stations, otherwise out of line-of-sight propagation range of each other, to communicate. Repeaters are found in professional, commercial, and government mobile radio systems and also in amateur radio.

<span class="mw-page-title-main">Mobile radio</span> Wireless communications systems using radio frequencies

Mobile radio or mobiles refer to wireless communications systems and devices which are based on radio frequencies, and where the path of communications is movable on either end. There are a variety of views about what constitutes mobile equipment. For US licensing purposes, mobiles may include hand-carried,, equipment. An obsolete term is radiophone.

LTR MultiNet Systems are APCO-16 compliant LTR Trunked Radio Systems and thus are mostly found in use as public safety systems. LTR MultiNet systems usually have one or more "status channels" that act like a control channel in a Motorola or EDACS system, however these channels can also carry voice transmissions simultaneously.

<span class="mw-page-title-main">Radio</span> Use of radio waves to carry information

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves. They are received by another antenna connected to a radio receiver. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

References

  1. Graf, Rudolf F. (1999). Modern Dictionary of Electronics, 7th Ed. Elsevier. p. 811. ISBN   9780080511986.
  2. Goldsmith, Andrea (8 Aug 2005). Wireless Communications. Cambridge University Press. ISBN   9780521837163 . Retrieved 20 April 2016.
  3. Hall, Mark (October 3, 2022). "Motorola, Inc.". Encyclopædia Britannica . Archived from the original on January 18, 2023. Retrieved January 17, 2022.
  4. 1 2 "A complete guide to Two-way Radios". Crystal Radio Systems Ltd. Archived from the original on June 26, 2022. Retrieved January 17, 2023.
  5. Haldane, Robert. (1995) The People's Force, A history of the Victoria Police. Melbourne University Press. ISBN   0-522-84674-2, 1995
  6. IEEE History Milestones retrieved Oct. 2, 2007
  7. One example of purpose-specific channel assignments is described in Ivanov, D. A., V. P. Savelyev, and P. V. Shemanski, "Organization of Communications," Fundamentals of Tactical Command and Control: A Soviet View, Soviet Military Thought Series #18, (Washington, D.C.: Superintendent of Documents, 1977) Library of Congress Control Number: 84602565. This is a US Air Force translation of a Soviet-era, Russian-language book. See also, "Inadequate System Capacity," Special Report: Improving Firefighter Communications, USFA-TR-099/January 1999, (Emmitsburg, Maryland: U.S. Fire Administration, 1999) pp. 18-19 and "5.2 Present System," The California Highway Patrol Communications Technology Research Project on 800 MHz, 80-C477, (Sacramento, California: Department of General Services, Communications Technology Division, 1982,) pp. V-4 - V-6.
  8. "3.4.1 User Equipment General Deficiencies," San Rafael Police Radio Committee: Report to Mayor and City Council, (San Rafael, California: City of San Rafael, 1995,) pp. 12.
  9. "IEEE 100 The Authoritative Dictionary of IEEE Standards Terms", Seventh Edition, IEEE Press, 2000, ISBN SBN 0-7381 -2601 -2
  10. For an example of talk around use, see "Problem Reporting," Special Report: Improving Firefighter Communications, USFA-TR-099/January 1999, (Emmitsburg, Maryland: U.S. Fire Administration, 1999) pp. 25-26. This article also confirms the definition of the phrase talk around.
  11. For examples, see, Mikhailov, K. E. "Communications Facilities on the Volga-Moscow Transmission Line," Long-Distance Electrical Transmission between the V. I. Lenin Hydroelectric Station and Moscow, (Jerusalem: Israeli Program for Scientific Translations, 1965).
  12. For an electrocardiogram telemetry example, see Planning Emergency Medical Communications: Volume 2, Local/Regional-Level Planning Guide, (Washington, D.C.: National Highway Traffic Safety Administration, US Department of Transportation, 1995) pp. 48.
  13. "Spartan Training Bulletin - Volume One – Issue One" . Retrieved October 18, 2017.
  14. For two examples of drive testing and field measurements of received signal levels, see:
    • "Section II: Radio Propagation Studies," The California Highway Patrol Communications Technology Research Project on 800 MHz, 80-C477, (Sacramento, California: Department of General Services, Communications Technology Division, 1982,) pp. II-1 - II-34.
    • Ossanna, Jr., Joseph F., "A Model For Mobile Radio Fading Due to Building Reflections: Theoretical and Experimental Fading Waveform Power Spectra," Bell System Technical Journal, November 1964, pp. 2935-2971. 800 MHz trivia: this article shows that signal fades occur at audio frequencies near CTCSS tones, explaining why only DCS was used in Motorola 800 MHz systems in the 1970s.
  15. Kenwood TKR-850 specification sheet
  16. For one example, see: "Plan Element S-7: Rationalized Funding" and "Plan Element L-2: Permanent Contra Costa Public Safety Radio Authority," Contra Costa County Public Safety Mobile Radio Master Plan, (Fairfax, Virginia: Federal Engineering, Inc., 2002,) pp. 45, 49.
  17. For one example, see: "3.2.10.1 Current System Problems," Trunked Radio System: Request For Proposals, (Oklahoma City, Oklahoma: Oklahoma City Municipal Facilities Authority, Public Safety Capital Projects Office, 2000) pp. 56.
  18. "2.4 Equipment Inventory," San Rafael Police Radio Committee: Report to Mayor and City Council, (San Rafael, California: City of San Rafael, 1995,) pp. 8.
  19. "8000 Exhibits:Equipment Replacement Costs for a Typical Three Position CDF Command and Control Center," 8000 Telecommunications Manual, (Sacramento, California: State of California, Department of Forestry and Fire Protection, 2006) Adobe PDF file on console costs.
  20. 1 2 See, "Appendix B - FCC Regulations," California EMS Communications Plan: Final Draft, (Sacramento, California: State of California EMS Authority, September 2000) pp.38. and Arizona Phase II Final Report: Statewide Radio Inter-operability Needs Assessment, Macro Corporation and The State of Arizona, 2004.
  21. "VHF or UHF... Which Is Better?"
  22. 1 2 Two Way Radio Range
  23. "2-Way Radio Range: How Far Can Two-Way Radios Communicate?"