This article includes a list of general references, but it lacks sufficient corresponding inline citations .(June 2009) |
Circuit switching is a method of implementing a telecommunications network in which two network nodes establish a dedicated communications channel (circuit) through the network before the nodes may communicate. The circuit guarantees the full bandwidth of the channel and remains connected for the duration of the communication session. [1] The circuit functions as if the nodes were physically connected as with an electrical circuit.
Circuit switching originated in analog telephone networks where the network created a dedicated circuit between two telephones for the duration of a telephone call. [2] It contrasts with message switching and packet switching used in modern digital networks in which the trunklines between switching centres carry data between many different nodes in the form of data packets without dedicated circuits.
The defining example of a circuit-switched network is the early analogue telephone network. When a call is made from one telephone to another, switches within the telephone exchanges create a continuous wire circuit between the two telephones, for as long as the call lasts.
In circuit switching, the bit delay is constant during a connection (as opposed to packet switching, where packet queues may cause varying and potentially indefinitely long packet transfer delays). No circuit can be degraded by competing users because it is protected from use by other callers until the circuit is released and a new connection is set up. Even if no actual communication is taking place, the channel remains reserved and protected from competing users.
While circuit switching is commonly used for connecting voice circuits, the concept of a dedicated path persisting between two communicating parties or nodes can be extended to signal content other than voice. The advantage of using circuit switching is that it provides for continuous transfer without the overhead associated with packets, making maximal use of available bandwidth for that communication. One disadvantage is that it can be relatively inefficient because unused capacity guaranteed to a connection cannot be used by other connections on the same network. In addition, calls cannot be established or will be dropped if the circuit is broken.
Multiplexing |
---|
Analog modulation |
Related topics |
For call setup and control (and other administrative purposes), it is possible to use a separate dedicated signalling channel from the end node to the network. ISDN is one such service that uses a separate signalling channel while plain old telephone service (POTS) does not.
The method of establishing the connection and monitoring its progress and termination through the network may also utilize a separate control channel as in the case of links between telephone exchanges which use CCS7 packet-switched signalling protocol to communicate the call setup and control information and use TDM to transport the actual circuit data.
Early telephone exchanges were a suitable example of circuit switching. The subscriber would ask the operator to connect to another subscriber, whether on the same exchange or via an inter-exchange link and another operator. The result was a physical electrical connection between the two subscribers' telephones for the duration of the call. The copper wire used for the connection could not be used to carry other calls at the same time, even if the subscribers were in fact not talking and the line was silent.
In circuit switching, a route and its associated bandwidth is reserved from source to destination, making circuit switching relatively inefficient since capacity is reserved whether or not the connection is in continuous use. Circuit switching contrasts with message switching and packet switching. [3] Both of these methods can make better use of available network bandwidth between multiple communication sessions under typical conditions in data communication networks.
Message switching routes messages in their entirety, one hop at a time, that is, store and forward of the entire message. Packet switching divides the data to be transmitted into packets transmitted through the network independently. Instead of being dedicated to one communication session at a time, network links are shared by packets from multiple competing communication sessions, resulting in the loss of the quality of service guarantees that are provided by circuit switching.
Packet switching can be based on connection-oriented communication or connection-less communication. That is, based on virtual circuits or datagrams.
Virtual circuits use packet switching technology that emulates circuit switching, in the sense that the connection is established before any packets are transferred, and packets are delivered in order.
Connection-less packet switching divides the data to be transmitted into packets, called datagrams, transmitted through the network independently. Each datagram is labelled with its destination and a sequence number for ordering related packets, precluding the need for a dedicated path to help the packet find its way to its destination. Each datagram is dispatched independently and each may be routed via a different path. At the destination, the original message is reordered based on the packet number to reproduce the original message. As a result, datagram packet switching networks do not require a circuit to be established and allow many pairs of nodes to communicate concurrently over the same channel.
Multiplexing multiple telecommunications connections over the same physical conductor has been possible for a long time, but each channel on the multiplexed link was either dedicated to one call at a time, or it was idle between calls.
In computer networking, multicast is a type of group communication where data transmission is addressed to a group of destination computers simultaneously. Multicast can be one-to-many or many-to-many distribution. Multicast differs from physical layer point-to-multipoint communication.
Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.
Frame Relay is a standardized wide area network (WAN) technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.
Connectionless communication, often referred to as CL-mode communication, is a data transmission method used in packet switching networks, using data packets that are frequently called datagrams, in which each data packet is individually addressed and routed based on information carried in each packet, rather than in the setup information of a prearranged, fixed data channel as in connection-oriented communication. Connectionless protocols are usually described as stateless protocols, the Internet Protocol (IP) and User Datagram Protocol (UDP) are examples.
A datagram is a basic transfer unit associated with a packet-switched network. Datagrams are typically structured in header and payload sections. Datagrams provide a connectionless communication service across a packet-switched network. The delivery, arrival time, and order of arrival of datagrams need not be guaranteed by the network.
Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.
Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time according to agreed rules, e.g. with each transmitter working in turn. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century but found its most common application in digital telephony in the second half of the 20th century.
A virtual circuit (VC) is a means of transporting data over a data network, based on packet switching and in which a connection is first established across the network between two endpoints. The network, rather than having a fixed data rate reservation per connection as in circuit switching, takes advantage of the statistical multiplexing on its transmission links, an intrinsic feature of packet switching.
Signalling System No. 7 (SS7) is a set of telephony signaling protocols developed in the 1970s that is used to set up and tear down telephone calls on most parts of the global public switched telephone network (PSTN). The protocol also performs number translation, local number portability, prepaid billing, Short Message Service (SMS), and other services.
In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.
A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.
In telecommunications, message switching involves messages routed in their entirety, one hop at a time. It evolved from circuit switching and was the precursor of packet switching.
In telecommunications, a point-to-point connection refers to a communications connection between two communication endpoints or nodes. An example is a telephone call, in which one telephone is connected with one other, and what is said by one caller can only be heard by the other. This is contrasted with a point-to-multipoint or broadcast connection, in which many nodes can receive information transmitted by one node. Other examples of point-to-point communications links are leased lines and microwave radio relay.
In telecommunications, common-channel signaling (CCS), or common-channel interoffice signaling (CCIS), is the transmission of control information (signaling) via a separate channel than that used for the messages, The signaling channel usually controls multiple message channels.
GSM services are a standard collection of applications and features available over the Global System for Mobile Communications (GSM) to mobile phone subscribers all over the world. The GSM standards are defined by the 3GPP collaboration and implemented in hardware and software by equipment manufacturers and mobile phone operators. The common standard makes it possible to use the same phones with different companies' services, or even roam into different countries. GSM is the world's predominant mobile phone standard.
In telecommunications and computer networking, connection-oriented communication is a communication protocol where a communication session or a semi-permanent connection is established before any useful data can be transferred. The established connection ensures that data is delivered in the correct order to the upper communication layer. The alternative is called connectionless communication, such as the datagram mode communication used by Internet Protocol (IP) and User Datagram Protocol (UDP), where data may be delivered out of order, since different network packets are routed independently and may be delivered over different paths.
Best-effort delivery describes a network service in which a network does not provide any guarantee that data is effectively delivered or that delivery meets any quality of service. In a best-effort network, all users obtain best-effort service. Under best-effort, network performance characteristics such as transmission speed, network delay and packet loss depend on the current network traffic load, and the network hardware capacity. When network load increases, this can lead to packet loss, retransmission, packet delay variation, further network delay, or even timeout and session disconnect.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.
A network socket is a software structure within a network node of a computer network that serves as an endpoint for sending and receiving data across the network. The structure and properties of a socket are defined by an application programming interface (API) for the networking architecture. Sockets are created only during the lifetime of a process of an application running in the node.
In computer networking, a flit is a link-level atomic piece that forms a network packet or stream. The first flit, called the header flit holds information about this packet's route and sets up the routing behavior for all subsequent flits associated with the packet. The header flit is followed by zero or more body flits, containing the actual payload of data. The final flit, called the tail flit, performs some book keeping to close the connection between the two nodes.
When you make a telephone call, for example, the telephone system establishes an electrical path between you and the person you're calling by joining available telephone cables -- circuits -- end-to-end. To complete your "connection", the telephone system's exchanges -- switching nodes -- allocate cable-miles in the form of circuits and maintain this allocation for the duration of your call. Thus, in circuit-switching, we say, circuits are allocated to carry connections. In pure circuit-switching, the making of a connection requires a number of distant switching nodes to piece together a continuous path from end to end; and, for the life of the connection, its constituent circuits are dedicated to carrying a conversation.
{{cite journal}}
: Cite journal requires |journal=
(help)