Carrier-sense multiple access with collision avoidance

Last updated

Carrier-sense multiple access with collision avoidance (CSMA/CA) in computer networking, is a network multiple access method in which carrier sensing is used, but nodes attempt to avoid collisions by beginning transmission only after the channel is sensed to be "idle". [1] [2] When they do transmit, nodes transmit their packet data in its entirety.

Contents

It is particularly important for wireless networks, where the alternative with collision detection CSMA/CD, is not possible due to wireless transmitters desensing (turning off) their receivers during packet transmission.

CSMA/CA is unreliable due to the hidden node problem. [3] [4]

CSMA/CA is a protocol that operates in the data link layer.

Simplified algorithm of CSMA/CA Csma ca.svg
Simplified algorithm of CSMA/CA

Details

Collision avoidance is used to improve the performance of the CSMA method by attempting to divide the channel somewhat equally among all transmitting nodes within the collision domain.

  1. Carrier Sense: prior to transmitting, a node first listens to the shared medium (such as listening for wireless signals in a wireless network) to determine whether another node is transmitting or not. Note that the hidden node problem means another node may be transmitting which goes undetected at this stage.
  2. Collision Avoidance: if another node was heard, we wait for a period of time (usually random) for the node to stop transmitting before listening again for a free communications channel.
  • Request to Send/Clear to Send (RTS/CTS) may optionally be used at this point to mediate access to the shared medium. This goes some way to alleviating the problem of hidden nodes because, for instance, in a wireless network, the Access Point only issues a Clear to Send to one node at a time. However, wireless 802.11 implementations do not typically implement RTS/CTS for all transmissions; they may turn it off completely, or at least not use it for small packets (the overhead of RTS, CTS and transmission is too great for small data transfers).
  • Transmission: if the medium was identified as being clear or the node received a CTS to explicitly indicate it can send, it sends the frame in its entirety. Unlike CSMA/CD, it is very challenging for a wireless node to listen at the same time as it transmits (its transmission will dwarf any attempt to listen). Continuing the wireless example, the node awaits receipt of an acknowledgement packet from the Access Point to indicate the packet was received and checksummed correctly. If such acknowledgement does not arrive in a timely manner, it assumes the packet collided with some other transmission, causing the node to enter a period of binary exponential backoff prior to attempting to re-transmit.

Although CSMA/CA has been used in a variety of wired communication systems, it is particularly beneficial in a wireless LAN due to a common problem of multiple stations being able to see the Access Point, but not each other. This is due to differences in transmit power, and receive sensitivity, as well as distance, and location with respect to the AP. [5] This will cause a station to not be able to 'hear' another station's broadcast. This is the so-called 'hidden node', or 'hidden station' problem. [6] Devices utilizing 802.11 based standards can enjoy the benefits of collision avoidance (RTS / CTS handshake, also Point coordination function), although they do not do so by default. By default they use a Carrier sensing mechanism called exponential backoff (or Distributed coordination function), that relies upon a station attempting to 'listen' for another station's broadcast before sending. CA, or PCF relies upon the AP (or the 'receiver' for Ad hoc networks) granting a station the exclusive right to transmit for a given period of time after requesting it (Request to Send / Clear to Send). [7]

CSMA-CA requires a determination of whether a channel is 'idle', even when incompatible standards and overlapping transmission frequencies are used. Per the standards, for 802.11/Wi-Fi transmitters on the same channel, transmitters must take turns to transmit if they can detect each other even 3 dB above the noise floor (the thermal noise floor is around -101 dBm for 20 MHz channels). [8] On the other hand, transmitters will ignore transmitters with incompatible standards or on overlapping channels if the received signal strength from them is below a threshold Pth which, for non Wi-Fi 6 systems, is between -76 and -80 dBm. [9]

IEEE 802.11 RTS/CTS Exchange

CSMA/CA can optionally be supplemented by the exchange of a Request to Send (RTS) packet sent by the sender S, and a Clear to Send (CTS) packet sent by the intended receiver R. Thus alerting all nodes within range of the sender, receiver or both, to not transmit for the duration of the main transmission. This is known as the IEEE 802.11 RTS/CTS exchange. Implementation of RTS/CTS helps to partially solve the hidden node problem that is often found in wireless networking. [10] [11]

Performance

CSMA/CA performance is based largely upon the modulation technique used to transmit the data between nodes. Studies show that under ideal propagation conditions (simulations), direct-sequence spread spectrum (DSSS) provides the highest throughput for all nodes on a network when used in conjunction with CSMA/CA and the IEEE 802.11 RTS/CTS exchange under light network load conditions. Frequency hopping spread spectrum (FHSS) follows distantly behind DSSS with regard to throughput with a greater throughput once network load becomes substantially heavy. However, the throughput is generally the same under real world conditions due to radio propagation factors. [4]

Usage

See also

Related Research Articles

<span class="mw-page-title-main">IEEE 802.11</span> Wireless network standard

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of medium access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.

Carrier-sense multiple access with collision detection (CSMA/CD) is a medium access control (MAC) method used most notably in early Ethernet technology for local area networking. It uses carrier-sensing to defer transmissions until no other stations are transmitting. This is used in combination with collision detection in which a transmitting station detects collisions by sensing transmissions from other stations while it is transmitting a frame. When this collision condition is detected, the station stops transmitting that frame, transmits a jam signal, and then waits for a random time interval before trying to resend the frame.

Carrier-sense multiple access (CSMA) is a medium access control (MAC) protocol in which a node verifies the absence of other traffic before transmitting on a shared transmission medium, such as an electrical bus or a band of the electromagnetic spectrum.

<span class="mw-page-title-main">Wi-Fi</span> Wireless local area network

Wi-Fi is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks, used globally in home and small office networks to link devices and to provide Internet access with wireless routers and wireless access points in public places such as coffee shops, hotels, libraries, and airports to provide visitors.

In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.

ALOHAnet, also known as the ALOHA System, or simply ALOHA, was a pioneering computer networking system developed at the University of Hawaii.

A collision domain is a network segment connected by a shared medium or through repeaters where simultaneous data transmissions collide with one another. The collision domain applies particularly in wireless networks, but also affected early versions of Ethernet. A network collision occurs when more than one device attempts to send a packet on a network segment at the same time. Members of a collision domain may be involved in collisions with one another. Devices outside the collision domain do not have collisions with those inside.

IEEE 802.11e-2005 or 802.11e is an approved amendment to the IEEE 802.11 standard that defines a set of quality of service (QoS) enhancements for wireless LAN applications through modifications to the media access control (MAC) layer. The standard is considered of critical importance for delay-sensitive applications, such as voice over wireless LAN and streaming multimedia. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

Distributed coordination function (DCF) is the fundamental medium access control (MAC) technique of the IEEE 802.11-based WLAN standard. DCF employs a carrier-sense multiple access with collision avoidance (CSMA/CA) with the binary exponential backoff algorithm.

<span class="mw-page-title-main">Hidden node problem</span> Problem in wireless networking

In wireless networking, the hidden node problem or hidden terminal problem occurs when a node can communicate with a wireless access point (AP), but cannot directly communicate with other nodes that are communicating with that AP. This leads to difficulties in medium access control sublayer since multiple nodes can send data packets to the AP simultaneously, which creates interference at the AP resulting in no packet getting through.

IEEE 802.15.4 is a technical standard which defines the operation of a low-rate wireless personal area network (LR-WPAN). It specifies the physical layer and media access control for LR-WPANs, and is maintained by the IEEE 802.15 working group, which defined the standard in 2003. It is the basis for the Zigbee, ISA100.11a, WirelessHART, MiWi, 6LoWPAN, Thread, Matter and SNAP specifications, each of which further extends the standard by developing the upper layers which are not defined in IEEE 802.15.4. In particular, 6LoWPAN defines a binding for the IPv6 version of the Internet Protocol (IP) over WPANs, and is itself used by upper layers like Thread.

RTS/CTS is the optional mechanism used by the 802.11 wireless networking protocol to reduce frame collisions introduced by the hidden node problem. Originally the protocol fixed the exposed node problem as well, but modern RTS/CTS includes ACKs and does not solve the exposed node problem.

<span class="mw-page-title-main">Exposed node problem</span>

In wireless networks, the exposed node problem occurs when a node is prevented from sending packets to other nodes because of co-channel interference with a neighboring transmitter. Consider an example of four nodes labeled R1, S1, S2, and R2, where the two receivers are out of range of each other, yet the two transmitters in the middle are in range of each other. Here, if a transmission between S1 and R1 is taking place, node S2 is prevented from transmitting to R2 as it concludes after carrier sense that it will interfere with the transmission by its neighbor S1. However note that R2 could still receive the transmission of S2 without interference because it is out of range of S1.

In computer networking, carrier-sense multiple access with collision avoidance and resolution using priorities (CSMA/CARP) is a channel access method. CSMA/CARP is similar in nature to the carrier-sense multiple access with collision detection (CSMA/CD) channel access method used in Ethernet networks, but CSMA/CARP provides no detection of network collisions. Instead of detecting network collisions, CSMA/CARP attempts to avoid collisions by using a system of transmission priorities.

Multiple Access with Collision Avoidance (MACA) is a slotted media access control protocol used in wireless LAN data transmission to avoid collisions caused by the hidden station problem and to simplify exposed station problem.

Multiple Access with Collision Avoidance for Wireless (MACAW) is a slotted medium access control (MAC) protocol widely used in ad hoc networks. Furthermore, it is the foundation of many other MAC protocols used in wireless sensor networks (WSN). The IEEE 802.11 RTS/CTS mechanism is adopted from this protocol. It uses RTS-CTS-DS-DATA-ACK frame sequence for transferring data, sometimes preceded by an RTS-RRTS frame sequence, in view to provide solution to the hidden node problem. Although protocols based on MACAW, such as S-MAC, use carrier sense in addition to the RTS/CTS mechanism, MACAW does not make use of carrier sense.

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that operates in the 2.4 GHz microwave band. The standard has extended link rate to up to 54 Mbit/s using the same 20 MHz bandwidth as 802.11b uses to achieve 11 Mbit/s. This specification, under the marketing name of Wi‑Fi, has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

<span class="mw-page-title-main">Mobile Slotted Aloha</span>

Mobile Slotted Aloha (MS-Aloha) is a wireless network protocol proposed for applications such as vehicle networks.

Traffic indication map (TIM) is a structure used in 802.11 wireless network management frames.

<span class="mw-page-title-main">Evolved wireless ad hoc network</span> Decentralized wireless network

An evolved wireless ad hoc network (EVAN) is a decentralized type of wireless network that compensates for the shortcomings of the existing wireless ad hoc network (WANET). An EVAN is ad hoc like a WANET because it does not rely on a pre-existing infrastructure, such as routers in wired networks or access points in wireless networks. Further advantages of WANETs over networks with a fixed topology include flexibility, scalability and lower administration costs. These characteristics of WANETs are maintained in EVAN as well. However, an EVAN has a physically separate resource management channel called tone channel, unlike existing WANETs. In WANETs, the data channel performs two roles: resource management and data transfer, but in EVAN, the data channel is used only for data transfer.

References

  1. "Federal Standard 1037C". Its.bldrdoc.gov. Retrieved 2012-09-09.
  2. "American National Standard T1.523-2001, Telecom Glossary 2000". Atis.org. Archived from the original on 2008-03-02. Retrieved 2012-09-09.
  3. "Study of different CSMA/CA IEEE 802.11-based implementations, Universitat Politècnica de Catalunya" (PDF). Archived from the original (PDF) on 2012-03-06. Retrieved 2012-09-09.
  4. 1 2 Viral V. Kapadia; Sudarshan N. Patel; Rutvij H. Jhaveri (2010). "Comparative study of hidden node problem and solution using different techniques and protocols, Journal of Computing". arXiv: 1003.4070 [cs.NI].
  5. Kaixin Xu; Mario Gerla; Sang Bae. "How Effective is the IEEE 802.11 RTS/CTS Handshake in Ad Hoc Networks?" (PDF). UCLA. Retrieved 28 September 2012.
  6. "How does Carrier Sensing and Interference impact Wi-Fi performance?" (PDF). Retrieved 15 March 2023.
  7. Park, Kihong. "Wireless Lecture Notes" (PDF). Purdue. Retrieved 28 September 2012.
  8. "Channel Bonding in WiFi and Radio Frequency Physics | Network Computing".
  9. Effect of adjacent-channel interference in IEEE 802.11 WLANs - Eduard Garcia Villegas; Elena Lopez-Aguilera; Rafael Vidal; Josep Paradells (2007)
  10. Comer, Douglas. (2009). Computer Networks and Internets. Upper Saddle River, NJ: Pearson Education Inc. ISBN   0-13-504583-5.
  11. "MIT Lecture - Communication Systems Engineering. Dr. Eytan Modiano" (PDF). Archived (PDF) from the original on 2010-06-13. Retrieved 2012-09-09.